This document is created with trial version of Image2PDF Pilot 2.16.108.

MERCEDES VITO VIANO

AUT潼 MASTER

2003-2008 r.в. Аизеаь

Руковоаство по экспауатаиии, техническое обскуживание, ремонт, особенности конструкиии, электросхемы

MERCEDES VITO VIANO

2003-2008 гг. выпуска

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ
РЕМонт
ОСОБЕННОСТИ КОНСТРУКЦИИ
ЭЛЕКТРОСХЕМЫ

Модели 639.7 и 639.8

Vito 109 CDI Vito 111 CDI Vito 115 CDI

OM646 DE 22LA, MCI 2,2 л 65 кВт (83 л.с.)
OM646 DE 22LA, MC2 2,2 л 80 kBt (109 л.с.)
OM646 DE 22LA, MC3 2,2 л 110 кВт (150 л.с.)

КИЕВ «ABTOMACTEP» 2008
РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ P9
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ 1
ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ ОМ 646 2,2 Л СDI 2
СЦЕПЛЕНИЕ 3
ТРАНСМИССИЯ 4
ПОДВЕСКИ КОЛЕС 5
РУЛЕВОЕ УПРАВЛЕНИЕ 6
T0PM03A 7
КУЗОВ 8
СИСТЕМА УПРАВЛЕНИЯ АВТОМОБИЛЕМ 9
СИСТЕМА ПАССИВНОЙ БЕЗОПАСНОСТИ 10
СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ
\qquad

СОДЕРЖАНИЕ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 9
Технические термины, встречающиеся в руководстве 9
Общий обзор 11
Рабочее место водителя 11
Эксплуатация автомобиля 13
Ключ 13
Положения замка зажигания 13
Регулировки сиденья 13
Регулировка рулевого колеса, 13
Зеркало 14
Ремни безопасности 14
Запуск двигателя с механической коробкой передач 14
Запуск двигателя с автоматической коробкой передач 14
Паркование и закрывание автомобиля 15
Системы, обеспечивающие безопасность движения. 16
Защита от кражи 17
Комбинация приборов 17
Многофункциональный дисплей (стандарт) 17
Многофункциональный дисплей (High-Line) 19
Особенности пользования некоторыми функциями 19
Системы поддержания скорости ТЕМПОМАТ И СПИДТРОНИК 23
Система электронного регулирования уровня кузова автомобиля (ENR) 25
Система ПАРКТРОНИК (PTS). 25
Варианты организации багажного отделения 26
Самопомощь 27
Где что искать? 27
Аварийное открывание и закрывание. 27
Подъемно-сдвижной верхний люк/панорамная сдвижная крыша 28
Ручное выключение блокировки коробки передач при стоянке 28
Замена ламп 28
Демонтаж запасного колеса. 30
Электрические предохранители 31
Передняя буксировочная проушина 34
Задняя буксировочная проушина 34
Шины и колеса 35
Технические характеристики автомобиля. 36

1. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ 39
Межсервисные интервалы технического обслуживания. 39
Работы по техническому обслуживанию 39
Моторный отсек 40
Замена масла в двигателе и масляного фильтра. Проверка, корректировка уровня жидкости. 40
Система охлаждения двигателя. Проверка, корректировка концентрации антифриза с антикоррозионными присадками 40
Гидравлический привод тормозов. 40
Стеклоомыватель 40
Двигатель 41
Замена фильтрующего элемента воздушного фильтра 41
Проверка поликлинового ремня на отсутствие износа и повреждений 42
Замена ремня 43
Замена топливного фильтра 43
Замена фильтрующего элемента пылевого фильтра системы отопления-вентиляции или комбинированного фильтра климатической системы 44
Колеса, тормозные механизмы 44
Давление воздуха в шинах: корректировка 44
Проверка толщины фрикционных накладок тормозных колодок и состояние тормозных дисков 44
Снятие, установка и регулировка тормозных колодок стояночного тормоза 46
Нижняя часть автомобиля 47
Проверка герметичности и состояния 47
Снятие и установка шаровых наконечников рулевых тяг 48
Сервисный компьютер ASSYST: Обновление показаний. 48
Дополнительные работы, проводимые однократно при первом техобслуживании,49
Замена масла и масляного фильтра в автоматической коробке передач 722.680/682/683 49
Дополнительные работы при каждом ТО 49
Тягово-сцепное устройство со съемным шаровым пальцем и автоматической блокировкой. 49
Дополнительные работы при каждом втором техобслуживании 50
Дополнительные работы, проводимые каждые 2 года 50
Дополнительные работы, проводимые после 180000 км 50
Дополнительные работы, проводимые каждые 10 лет или через 300000 км пробега 50
2. ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ ОМ 646 2,2 л СDI. 51
Общие сведения 51
Коды опций комплектации автомобилей 51
Технические характеристики двигателя 51
Снятие и установка силового агрегата 52
Узлы и агрегаты в передней части двигателя 61
Снятие и установка головки блока цилиндров (ГБЦ) 61
Проверка взаимного положения распределительных валов. 62
Проверка взаимного положения коленчатого вала и системы распределительных валов 62
Ремонт ГБЦ 67
Снятие и установка клапанов 67
Седла клапанов 68
Направляющие втулки клапанов 68
Обработка ГБЦпод установку направляющихвтулок клапанов 68
Проверка гидравлических компенсаторов зазоров в приводе клапанов 69
Разборка и ремонт нижней части двигателя 69
Снятие и установка коленчатого вала 69
Проверка состояния и ремонт деталей шатунно-поршневой группы (ШПГ) и кривошипно-шатунного механизма (КШМ) 70
Шатунно-поршневая группа деталей (ШПГ). Состав 70
Кривошипно-шатунный механизм (КШМ). Состав 70
Проверка и ремонт шатунов 75
Соединение поршней с шатунами и установка в блокцилиндров 75
Измерение выступания поршня над плоскостью разъема нового блока цилиндров 76
Передняя крышка блока цилиндров 76
Установка масляного насоса77
Установка задней крышки блока цилиндров 77
Установка маховика 77
Система смазки 78
Масляный насос 78
Поддон масляного картера 78
Масляный фильтр и теплообменник 79
Подающий и возвратный маслопроводы 79
Элементы системы охлаждения 79
Циркуляционный насос охлаждающей жидкости и термостат 79
Радиатор 80
Вентилятор системы охлаждения 80
Соединительные шланги и патрубки 80
Система подачи воздуха 81
Функциональная схема системы подачи воздуха 81
Турбонагнетатель 81
Снятие установка турбонагнетателя 82
Снятие и установка промежуточного охладителя 83
Элементы системы подачи воздуха 83
Система подачи топлива и впрыска 84
Контур низкого давления 84
Контур высокого давления 85
Топливный насос высокого давления 85
Привод ТНВД 87
Топливный коллектор высокого давления (ТКВД) 88
Топливопроводы высокого давления 88
Клапан регулирования давления в ТКВД 88
Топливные форсунки 89
Штуцер крепления трубки высокого давления к топливной форсунке. 90
Система выпуска отработавших газов 91
З.СЦЕПЛЕНИЕ. 92
Управление механизмом сцепления 92
Принцип действия гидравлического привода выключения сцепления 92
Система автоматического привода выключения сцепления 93
Привод выключения сцепления при помощи педали 93
Проверка деталей сцепления при ремонте 93
Снятие соосного рабочего цилиндра сцепления 94
Снятие и установка педали сцепления 94
Кронштейн педали сцепления
95
3. ТРАНСМИССИЯ
Обозначение КПП и технические характеристики 95
Редуктор главной передачи задней оси. 95
Механическая коробка перемены передач типа 716.6 96
Гидравлический блок управления 96
Механическое переключение передач 96
Разборка и сборка полуавтоматический КПП 716.6 98
Разборка и сборка передней части корпуса КПП 101
Датчик положения механизма выключения сцепления 101
Датчик давления в гидравлическом приводе управления КПП 102
Внутренний механизм переключения передач 102
Механические элементы КПП 102
Синхронизаторы. 102
Трехконусный синхронизирующий механизм 102
Двухконусный синхронизирующий механизм 103
Одноконусный синхронизирующий механизм 103
Промежуточный вал 103
Главный вал и первичный вал 104
Редуктор главной передачи задней оси 104
Снятие и установка заднего редуктора главной передачи. 104
Приводные валы 105
Снятие и установка карданного вала 105
Снятие и установка приводных валов колес задней оси 105
Извлечение внутреннего ШРУС приводного вала из редуктора главной передачи задней оси 106
Снятие наружного ШРУСа с приводного вала 106
Снятие внутреннего ШРУСа с приводного вала 106
Замена пыльника ШРУСа 107
Редуктор передней оси. 107
4. ПОДВЕСКИ КОЛЕС 108
Подвеска передних колес 108
Рычаг передней подвески 108
Передний рычаг и поворотный кулак 108
Крепление поворотного кулака к стойке амортизатора 108
Стабилизатор поперечной устойчивости 109
Крепление штанги стабилизатора поперечной устойчивости 109
Стойка амортизатора. 109
Задняя подвеска 110
Задняя подвеска с металлическими пружинами 110
Задняя пневмоподвеска. 110
Компрессор пневматической подвески 110
Трубопроводы задней пневмоподвески 110
Задний стабилизатор 110
Снятие и установка заднего амортизатора. 111
Проверка состояния заднего амортизатора 111
Снятие и установка рычагов задней подвески 111
Снятие и установка подшипника задней ступицы 112
Снятие и установка реактивной тяги заднего редуктора 112
Замена сальника заднего редуктора 112
Общая информация по проверке углов установки колес. 113
Проверка и регулирование схождения передних колес 113
Проверка и регулировка развала и продольного наклона оси поворота колеса 114
Проверка и регулирование схождения задних колес 115
Проверка развала задних колес 115
5. РУЛЕВОЕ УПРАВЛЕНИЕ 116
Снятие и установка рулевого механизма 116
Гидравлический усилитель рулевого управления (ГУР) 117
Рулевая колонка 118
Рулевое колесо 118
Снятие и установка рулевого колеса 118
Снятие вращающегося контактного сочленения 118
Установка среднего положения вращающегося контактного сочленения (BKC) 118
Снятие и установка датчика угла поворота рулевого колеса 119
Снятие и установка наконечника рулевой тяги 119
Снятие и установка пыльника рулевой тяги 119
Снятие и установка рулевой тяги 119
Регулировка зазора зубчатого зацепления в реечном механизме 119
6. TOPMOЗA 120
Снятие и установка педали тормоза 121
Снятие и установка ГТЦ (Главный тормозной цилиндр).. 121
Снятие установка вакуумного усилителя тормозов 122
7. кузов 123
Снятие и установка капота 123
Снятие и установка брызговиков 123
Снятие и установка решетки радиатора 123
Снятие и установка переднего бампера 123
Снятие и установка верхней накладки бампера 124
Разборка и сборка передней панели 124
Снятие и установка опорной траверсы передней панели. 124
Снятие и установка внешнего зеркала заднего вида 124
Снятие и установка переднего крыла 125
Снятие и установка лючка топливного бака 125
Снятие и установка углов заднего бампера 125
Разборка и сборка заднего бампера 126
Снятие и установка усилителя бампера 126
Снятие и установка бокового крепления бампера 126
Снятие и установка подножки боковой двери 126
Снятие и установка передних пассажирских сидений 126
Снятие и установка верхних рейлингов 126
Сцепное устройство 126
Контрольные данные по зазорам при установке съемных элементов кузова 129
8. СИСТЕМА УПРАВЛЕНИЯ АВТОМОБИЛЕМ 130
Информационная сеть автомобиля (по состоянию на 01.01.2007) 130
Принцип действия мультиплексной сети CAN 130
Принцип формирования сигналов в мультиплексной сети 130
Блок-схема мультиплексных сетей автомобилей Vito Viano. 131
Список компонентов мультиплексных сетей 131
Обмен данными между шинами данных 132
Комбинация приборов (A1) 132
Передний универсальный блок коммутации. 132
Функции блока SAM 132
Система управления двигателем 132
Назначение системы управления двигателем 133
Функции, выполняемые системой управления в различных режимах 133
Управление подачей топлива к ТНВД 133
Управление количеством впрыскиваемого топлива 133
Управление давлением впрыскиваемого топлива 133
Управление количеством впрыскиваемого топлива в режиме запуска двигателя 133
Управление впрыском в режиме движения. 133
Управление впрыском в режиме холостого хода 134
Функция управления впрыскиванием предварительной порции топлива. 134
Функция управления впрыскиванием основной порции топлива 134
Заключительный этап впрыска 134
Функция предварительного нагрева свечей накаливания. 134
Послепусковой нагрев 134
Функция управления давлением наддува 134

This document is created with trial version of Image2PDF Pilot 2.16.108.
Функция управления эмиссией вредных веществ в окружающую среду 135
Определения соотношения воздух-топливо 135
Управление рециркуляцией отработавших газов (EGR) 135
Управления отсечкой подачи воздуха. 135
Функция управления отключением компрессора кондиционера 135
Устройство системы управления двигателем 136
Система подачи топлива 136
Функциональная схема управления двигателем 136
Элементы системы управления двигателем 137
Электронный блок управления двигателем (ЭБУ CDI). 137
Датчики 138
Датчик положения педали акселератора (B37) 138
Датчик положения коленчатого вала (L5) 138
Датчик положения распределительного вала (B6/1). 138
Датчик температуры охлаждающей жидкости (B11/4). 139
Датчик температуры топлива (B50) 139
Датчик массы входящего воздуха ($\mathrm{B} 2 / 5$), объединенный с датчиком температуры входящего воздуха (B2/5b1). 139
Датчик температуры нагнетаемого воздуха (В17/9) 140
Датчик давления наддува (B5/1) 140
Датчик давления топлива в ТКВД (B4/6) 141
Датчик состояния масла (B40) 141
Входной датчик кислорода на преобразователе ОГ (G3/2) 142
Датчик давления на выходе из воздушного фильтра (B28/5). 142
Исполнительные устройства системы управления CDI 143
Свечи накаливания (R9) 143
Клапан регулирования давления в ТКВД (Ү74) 144
Клапан регулирования подачи топлива в ТНВД 144
Привод клапана рециркуляции отработавших газов (EGR). 145
Система курсовой устойчивости ESP 145
Взаимодействие систем 146
Размещение компонентов системы ABS (для автомобилей, не оборудованных системой ESP) 147
Описание элементов системы. 147
Датчики 147
Датчики частоты вращения колес 147
Датчик поперечных ускорений 148
Датчик угловой скорости (рыскания) 148
Датчик угла поворота рулевого колеса 148
Гидравлический блок регулирования тормозных усилий 148
Функционирование системы ESP 149
Система экстренного торможения
Brake Assist System (BAS): функциональное описание 150
Система контроля за проведением ТО и состояния автомобиля (ASSYST) 151
Система контроля давления в шинах. 152
10. СИСТЕМА ПАССИВНОЙ БЕЗОПАСНОСТИ 153
Блок-схема системы пассивной безопасности 154
Элементы системы безопасности 154
Меры предосторожности при обслуживании узлов, содержащих элементы системы пассивной безопасности. 154
Подушка безопасности водителя 156
Боковые подушки безопасности 156
Преднатяжитель ремня безопасности 156
Конструкция УПН 156
Верхние боковые подушки безопасности 157
СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ 158

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Технические термины, встречающиеся в руководстве
(Anti-Blockier-System) (антиблокировочная система) Предотвращает при торможении блокировку колес, так что управление автомобилем возможно и дальше.

BAS

(Brems-Assistent-System) (система экстренного торможения) Система, сокращающаятормозной путь в экстренных ситуациях, которую водитель активирует путем быстрого нажатия напедаль тормоза.

CAN

(Controller Area Network) Управляет функциями автомобиля, ках, например, блокировкой замков дверей или стеклоочистителями в зависимости от параметров автомобиля и окружающей среды и передает их системе управления. Основой этой системы является связь электронных систем в автомобиле.

COMAND

(Cockpit Management and Data System) Информационно-управленческая центральная система для различных функций автомобиля, как радиоприемник, проигрыватель компактдисков и прочее опционное оборудование, как, например, CD-чейнджер, телефон и тд.

DISTRONIC

Система DISTRONIC (Дистроник) оказывает поддержку водителю при сохранении заданной скорости постоянной на автострадах и государственных дорогах: если перед вами не идет другой автомобиль, то система функционирует как обынный Темпомат, если впереди опознается автомобиль, движущийся на более низкой скорости, то система ДистроникК снижает скорость настолько, чтобы сохранить минимальную дистанцию довпереди идущего автомобиля.

DTR

(DISIRONIC) (См. Дистроник)

ELC-DE

Электронная система, выявляющая несанкционированный доступ в автомобиль, несанкционированное управление автомобилем и являющаяся составной частью защиты от кражи автомобилей "Мерседес-Бенц".

EMV

(Elektromagnetische Vertraeglichkeit) (электомагнитная совместимость) Электрические и электронные компоненты автомобиля защищены от воздействия полей помех, как, например, радиолокационных установок, линий тока или радиотелефонов.

EN 228

Европейский стандарт EN 228 для неэтилированного бензина.

ESP

(Elektronisches Stabilitaets Programm) (электронная система стабилизации движения) Улучшает стабилизацию движения и способ-

ность передачи тягового усилия при ускорении ина поворотах.

GPS

(Global Positioning System) Спутниковые сигналы передают через соответствующий приемник географическое местонахождение. Ero можно сравнитьсцифровой картой страны (например, на компакт-диске карточных данных) и использовать для определения местонахождения и навигации.

GSM

(Global System for Mobile Communications) Стандарт GSM определяет детали для создания сотовой цифровой системы мобильной радиосвязи с регулярной структурой. Благодаря такому единому стандарту вы можете пользоваться вашим мобильным телефоном за границей. Для GSM имеется около 300 провайдеров сети в 120 странах. Способ передачи - цифровой.

IRS

(Innenraumschutz) (устройство защиты салона)

KEYLESGO

Система для управления автомобилем без ключа.

PTS

PARKTRONIC System (см. «Парктроник»)

RDS

(Radio-Data-Systern) Передаваемые радиостанциями сигналы с сообщениями о заторах на дорогах, которые анализируются, например системой COMAND, для динамического сопровождениякцели.

SMS

(Short Message Servise) Служба радиотелефонных сетей, через которую система DynAPS может принимать актуальные сообщения о ситуациях на дорогах.

SRS

(Supplemental Restraint System) Система, дополняющая системы удержания пассажиров, как, например, натяжители ремней безопасности и устройства ограничения силы натяжения ремней безопасности.

TELEAID

(Telematic Alarm Identification non Demand) Служба Telematik «ДаймлерКрайслер», которая при аварии вызывает срабатывание системы вызова помощи на базе системы GPS и автомобильного радиотелефона.

Блок управления

Составная часть электронной системы управления функциями, например, двигателя, автоматической коробки передач или системы ESP.

Блокировочный механизм рычага управления АКП

Блокировочный механизм, предотвращающий

случайное переключение рычага управления автоматической коробкой передач в поставленном на стоянку автомобиле из положения P в другое положение.

Блокирующая кнопка

Кнопка на двери, показывающая, заблокирована или разблокирована дверь.

Вязкость моторного масла

Мера внутреннего трения (вязкость) масла при различной температуре. Вязкость тем выше, чем лучше способность масла переносить более высокие температуры без приобретения слишком жидкой консистенции или более низкие температуры без приобретения слишком густой консистенции.

Детское сиденье, обращенное назад

Специальная система удержания пассажиров длядетейввозрасте до 9 месяцев или весомдо 10 kT. Сиденье Rebard монтируется на сиденье пассажира в направлении, противоположном движению. Сенсорная система сиденья переднего пассажира предотвращает срабатывание подушки безопасности переднего пассажира, если смонтировано сиденье Rebard.

Диапазон переключения

Число передач, находящихся в распоряжении автоматической коробки передач. Диапазон переключения передач вы можете ограничить.
Диапазон превышенной частоты вращения двигателя
Частота вращения в диапазоне красной маркировки тахометра, с которой двигатель должен работать лишь кратковременно.

Дорожный просвет автомобиля

Дорожный просвет автомобиля автоматически регулируется в зависимости от выбранной установки и скорости. Например, при очень плохом состоянии дорожного покрытия водитель может установить дорожный просвет вручную.

Знак

Знак для сертификации согласно соответствующим директивам ЕС.

Индекс скорости

Часть условного обозначения шин указывает, для какого диапазона скорости допущена шина.

Индикатор LIM (Limiter)

(Ограничитель скорости) Контрольная лампа на рычаге переключателя темпомата отображает, активировано ли ограничение скорости системы «СПИДТРОНИК».

Кик-даун

У автоматической коробки передач при нажатии педали акселератора с преодолением точки сопротивления коробка передач переключается на самую низкую возможную передачу. Тем самым автомобиль производит более быстроеускорение.

Колесо

Обод и зубчатый обод обычно в разговорной речи называют ободом.

Комбинация приборов

Индикации и контрольные лампы в поле зрения водителя, как, например, многофункциональный дисплей, тахометр, спидометр, индикация резерва топлива.

Комплект для временного ремонта шин TIREFIT

Предназначен для временного ремонта шины. В комплект для временного ремонта входят баллон с уплотнительным средством, наполняющий шланг и устройство для вывинчивания вентилей с золотником вентиля.

Коробка передач

Преобразователь частоты вращения в крутящий момент, который высокую частоту вращения двигателя (с низким крутящим моментом) преобразуетв низкуючастотувращениянаведущих колесах (свысоким крутящим моментом).

Ксеноновая фара

Передняя фара, у которой интенсивный свет образуется за счет газового разряда, а не спирали накаливания.

Лингвотроник

Производит голосовое управление автомобильным телефоном, мобильным телефоном или аудиосистемами, как, например, радиоприемник или проигрыватель компакт-дисков.

Меню

Индикации системы управления сведены в меню. Меню тематически объединяют соответственно несколько команд. Например, в меню "AUDIO" (аудио) вы найдете команды "Selekt station" (выбрать радиостанцию) или "Operate CD player» (управление проигрывателем компакт-дисков). Самими этими командами вы можете непосредственно изменять установку для вашего автомобиля.

Многофункциональное рулевое колесо

Рулевое колесо с кнопками, управляющими системой управления.

Многофункциональный дисплей

Дисплей на комбинации приборов, отображающий информацию системы управления и неисправности.

Момент затяжки

Усилие вращения, с которым затягиваются болты, например болты крепления колес. Измеряется в ныотонах, умноженных на метр (Нм).

Напряжение бортовой сети

Электрическое напряжение в автомобиле, зависящее от параметров кабельной разводки и потребителейэлектроэнергии. Аккумуляторная батарея способна создавать и принимать на себя высокие пиковые нагрузки без существенных колебаний напряжения в сети.

Номер двигателя

Заданный изготовителем и находящийся на блоке цилиндров номер, по которому любой двигатель может быть однозначно идентифицирован.

Номер шасси

Заданный изготовителем и находящийся на кузове номер, по которому любой автомобиль может быть однозначно идентифицирован.

0.4.И.М.

Показывает октановое число бензина, которое было определено исследовательским методом. Оно является мерой того, насколько высоко сопротивление бензина по отношению к нежелательному самовоспламенению (детонационная стойкость).

0.4.M.M.

Показывает октановое число бензина, которое было определено по моторному методу. Оно является мерой того, насколько высоко сопротивление бензинапо отношению к нежелательному самовоспламенению (детонационная стойкость).

Парктроник

Система, облегчающая паркование подачей визуальных и звуковых сигналов.

Программный переключчатель

Кнопка для переключения автоматической коробки передач между штатными режимами работы ("S») и эксплуатации в зимний период $(a W n)$.

Рабочее место водителя

Все приборы и органы управления (переключатели, кнопки, контрольные лампы) в поле зрения водителя, необходимые для управления автомобилем и контроля за работой его систем.

Режим принудительного холостого хода

Пассивное ускорение автомобиля, например при движении под уклон.

Режим тяги

Активноеускорение автомобиля путем нажатия педали акселератора.

Ременный привод

Приводной ремень от двигателя к моторным агрегатам, как, например, генератор или компрессор кондиционера.

Сервисная система

Индикатор ТО системы управления для индикации следующего проведения техобслуживания.

Силовой агрегат

Собирательное понятие для всех механизмов автомобиля, относящихся к приводу: двигатель, сцепление, коробка передач, приводные валы, колеса.

Система распознавания наличия детского

 сиденьяДля системы автоматического распознавания наличия детского сиденья на сиденье переднего пассажира на вашей станции ТО «Мерседес-Бенц» вы можете приобрести специальные детские сиденья. Если такое детское сиденье смонтировано на сиденье переднего пассажира, то автоматически выключается подушка безопасности переднего пассажира (контрольная лампа горит).

Система регулирования двигателя

Управляет двигателем, например, регулирует частоту вращения двигателя.

Система управления

При помощи этой системы вы можете вызвать информацию и индикацию неисправностей по вашему автомобилю и произвести установки. При этом многофункциональный дисплей служит в качестве поля индикации, а кнопки на многофункциональном рулевом колесе управляют индикацией и установками в системе управления.

Системы удержания пассажиров

Ремнибезопасности, натяжители ремнейбезопасности, подушки безопасности и устройства удержания детей. Являясь самостоятельными системами, они по своей защитной функции согласованы друг с другом.

Служба телематики

Объединяет в себе такие понятия, как телекоммуникация и информатика.

Способность передачи тягового усилия

Способность передачи усилия от двигателя через шины на дорогу.

Теледиагностирование

Передает параметры автомобиля и актуальное положение автомобиля в центр сервисного обслуживания Customer Assistance Centr «Мерседес-Бенц" через телефонную сеть и систему TELEAID.

Темпомат

Система для автоматического удержания установленной водителем скорости автомобиля.

Тормозная система SBC

(Sensotronic Brake Control) Гидравлинеская тормозная система с электронно регулируемым повышением тормозного усилия для повышения надежности и комфортабельности торможения.

Устройство защиты салона

Относится к устройству защиты от кражи автомобиля и вызывает срабатывание тревожной сигнализации, если при закрытом и заблокированном автомобиле кто-то разбивает боковые стекла и протягивает руку в салон.

Функция памяти

Производит ввод в память до трех индивидуальных положений сиденья, рулевого колеса и зеркал для каждого ключа и ключа системы KEYLESSGO.

Центрирующий штифт

Металлический штифт с резьбой. Центрирующий штифт является вспомогательным средством при смене шин и предназначен для точной юстировки колеса на ступице.

Элемент для сохранения напряжения

в бортовой сети
Устанавливаемый позднее соединительный элемент с положительным и отрицательным полюсами для эксплуатации дополнительных электрических приборов через аккумуляторную батарею для потребителей электроэнергии.

Общий обзор

Рабочее место водителя

Комбинация приборов

1. Световые индикаторы левой части комбинации приборов (см. таблицу)
2. Световые индикаторы правой части комбинации приборов (см. таблицу)
3. Кнопка управления +
4. Кнопка управления -
5. Указатель уровня топлива в баке со световым индикатором резервного запаса топлива
6. Спидометр
7. Многофункциональный дисплей (стандарт или High-line)
 -
8. Тахометр
9. Кнопка управления

многофункциональным дисплеем "СБРОС" 10. Кнопка управления

многофункциональным дисплеем «МЕНЮ»
Рис. 2

Световые индикаторы в левой части комбинации приборов

-	Неисправность ламп освещения
F	Не закрыта дверь (двери)
ED	Индикатор дальнего света
4	Неисправен вентилятор
60	Электронная система поддержания уровня кузова (ENR)
$\underline{2}$	Пристегните ремни безопасности
¢	Аккумуляторная батарея не заряжается
0	Изношены тормозные колодки
(8)	Задействован стояночный тормоз
*	Указатель левого поворота

Центральная панель управления
На центральной панели расположены группы клавиш, назначение которых показано на рис. 4.

1. Индикация для системы «ПАРКТРОНИК»
2. ТЕМПМАТИК

Обогрев задней части салона / Кондиционер задней части салона Автоматизированная система кондиционирования воздуха в задней части ТЕРМОТРОНИК
Автоматизированная система
кондиционирования воздуха в задней части
3. Обогрев сиденья переднего пассажира

4 Включение/выключение системы «ПАРКТРОНИК»
5. Освещение в задней части салона
6. Центральная блокировка салона/ задней части
7. Контрольная лампа отключения подушки безопасности пассажира
8. Включение/выключение аварийной световой сигнализации
9. Включение/выключение системы ASR
10. Включение/выключение стеклоочистителя заднего стекла
11. Обогрев заднего стекла
12. Обогрев сиденья водителя

Индикатор ограничителя скорости
Индикатор предпускового подогрева Система регулирования ускорения
Система регулирования ускорения/ электропневматической системы активного регулирования мощности (ASR/EPS)

Световые индикаторы в правой части комбинации приборов

Антиблокировочная система тормозов (ABS)
0 Бортовая диагностика двигателяУровень масла ниже нормы

Панель управления на двери

Функциональное назначение органов управления, расположенныхна дверной панели управления, показано на рис. 6.

1. Панель управления на двери

- Регулировка наружных зеркал заднего вида
- Стеклоподъемники
- Откидное окно

2. Регулировка переднего сиденья
3. Функция ПАМЯТЬ
4. Открывание двери

Рис. 6

Указатель правого поворота
(1) Уровень тормозной жидкости
sRs Дополнительная система безопасности
1 Tемпература охлаждающей жидкости выше нормы

- уровень охлаждающей жидкости ниже нормы
ㄷ Загрязнен топливный фильтр
디․ Вода в топливном фильтре
Загрязнен воздушный фильтр
母 уровень жидкости в бачке омывателя ниже нормы

Потолочная панель управления

Функциональное назначение органов управления, расположенных на потолочной панели, показано на рис. 5.

1. Сдвижной люк
2. Плафон для чтения, справа
3. Автоматическое освещение салона
4. Отделение для очков (отсутствует при наличии электронной системы защиты салона (EDW)
5. Освещение салона
6. Переключатель сдвижного люка вперед/назад
7. Плафон для чтения слева

Многофункциональное рулевое колесо
На многофункциональном рулевом колесе расположены клавиши управления некоторыми системами автомобиля (см. рис. 3).

1. Многофункциональный дисплей
2. Регулировка громкости

= тише громче

3. Пользование телефоном

прием телефонного разговора
окончание телефонного разговора
4. Переход от меню к меню

됴 вперед [ㅐㄹ
5. Переход в пределах меню

вперед назад

Эксплуатация автомобиля

Ключ

Для удобства эксплуатации в комплект автомобиля входит универсальный элект-ронно-механический ключ, являющийся одновременно пультом управления системой сигнализации и центральным замком. Назначение кнопок и составных частей ключа показано на рис. 7 .

Положения замка зажигания

0. Ключ вынут. Рулевое колесо заблокировано. Ключ вставлен. Рулевое колесо разблокировано.

1. Электропитание для некоторых потребителей электроэнергии, как, например, система регулирования положения сидений.
2. Зажигание. Электропитание для всех потребителей электроэнергии. Положение движения для автомобилей с бензиновыми двигателями, положение предпускового подогрева и движения для автомобилей с дизельными двигателями.
3. Пуск.

Рис. 8
Примечание: на автомобилях с автоматической коробкой передач для снятия блокировки рычага управления автоматической коробкой передач следует нажать педаль тормоза и повернуть ключ в замке зажигания в положение 2 .

Регулировки сиденья

В зависимости от варианта комплектации автомобиля сиденья могут регулироваться механически или электрически.

Механическая регулировка сиденья

1. Регулировка наклона спинки сиденья
2. Регулировка высоты сиденья
3. Регулировка наклона подушки сиденья
4. Регулировка продольного положения
5. Регупировка поясничной опоры

Рис. 9

Механическая регулировка

 высоты подголовника

1. Кнопка разблокировки
2. Регулировка по высоте

Рис. 10

Электрическая регулировка сиденья

Переключатель для электрической peryлировки положения сиденья находится на двери.
Для осуществления регулировки сиденья поверните ключ в замке зажигания в положение 1.
Или откройте одну из дверей.
Или нажмите на выключатель.
При этом вы можете электрически регулировать положение сиденья.

Примечание: при выключенном зажигании вы можете изменить положение сиденья в течение 30 секунд после разблокировки замков дверей. Если вы хотите изменить положение сиденья, после того как система электрической peryлировки была автоматически деактивирована через 30 секунд, нажмите дважды на кнопку ключапередатчика для блокировки и разблокировки дверей, затем отрегулируйте положение сиденья с помощью переключателей на двери.

1. Регулировка высоты подголовника
2. Регулировка спинки сиденья
3. Регулировка продольного положения
4. Регулировка наклона подушки сиденья
5. Регулировка высоты сиденья

Рис. 11

Регулировка поясничной поддержки

Регулировка высоты и наклона подголовника

1. Кнопка разблокировки
2. Электрическая регулировка высоты подголовника
3. Ручная регулировка наклона подголовника

Рис. 13

Внимание: не устанавливайте вручную высоту подголовника с электрической регулировкой. В противном случае вы повредите механизм подголовника.

Регулировка рулевого колеса

Регулировку положения рулевого колеса производите только после остановки автомобиля.
Рычаг для изменения положения рулевой колонки находится под рулевым колесом.

1. Рычаг
2. Высота рулевой колонки
3. Продольная регулировка рулевой колонки

Рис. 14

Зеркало

Перед началом движения отрегулируйте положение внутреннего и наружных зеркал заднего вида так, чтобы вы могли хорошо обозревать дорожное движение.
Внутреннее зеркало заднего вида регулируется вручную.

Наружные зеркала заднего вида

1. Левое наружное зеркало заднего вида
2. Кнопка регулировки
3. Правое наружное зеркало заднего вида

Внимание: наружные зеркала заднего вида дают уменьшенное изображение. Объекты кажутся более удаленными, чем в действительности.

Ремни безопасности

Внимание: для проведения работ по ремонту и обслуживанию, связанных с вмешательством в систему пассивной безопасности, компания "Даймлер-Крайслер" рекомендует вам обращаться на одну из станций ТО "Мерседес-Бенц», так как специалисты СТОА $«$ МерседесБенци обладают соответствующими профессиональными знаниями, и в их распоряжении есть все инструменты для выполнения всех необходимых работ.
Неквалифицированному персоналу запрещается выполнять сервисные работы, особенно если эти работы могут повлиять на безопасность, а также выполнять работы на системах, имеющих отношение к безопасности.

1. Регулировка ремня безопасности по высоте
2. Язычок
3. Замок ремня
4. Расцепляющая клавиша

Рис. 16

Регулировка высоты верхней точки крепления ремня
безопасности

Нажмите кнопку разблокировки (1) и сдвиньте вверх или вниз регулятор высоты ремня безопасности.

Запуск двигателя с механической коробкой передач

Запуск двигателя с механической коробкой передач осуществляется поворотом ключа зажигания в положение 3. Для запуска дизельного двигателя следует дождаться выключения желтого светового индикатора бr свечей накаливания.

При прогретом двигателе вы можете запускать двигательбезпредпусковогоподогрева.

Схема переключения передач МКПП
1-6. Передачи для движения передним ходом
R. Передача для движения задним ходом

Рис. 18

Запуск двигателя с автоматической коробкой передач

Запуск двигателя с автоматической коробкой передач осуществляется поворотом ключа зажигания в поло жение 3 с предварительным нажатием на педаль тормоза. Для запуска дизельного двигателя следует дождаться погасания желтого светового индикатора свечей накаливания.
Примечание: нажатие на педаль тормоза с поворотом ключа в положение 2 разблокирует рычаг селектора передач.
Перед запуском двигателя рекомендуется установить селектор передач в нейтральное положение (\mathbf{N}) или в положение парковки (\mathbf{P}).

Схема перекпючения передач в АКПП
Р. Положение при парковании с блокировкой рычага управления АКП
R. Передача заднего хода
N. Холостой ход
D. Положение движения

Рис. 19

Для снятия блокировки рычага переключения передач в АКПП следует включить зажигание и нажать педаль тормоза.
Внимание: при неисправности
электроники автомобиля вы можете
снять блокировку рычага управления
АКП вручную.

Стояночный тормоз

Для приведения стояночного тормоза в действие следует нажать на педаль (2). Для отпускания стояночного тормоза следует потянуть рукоятку (1) на себя.
При этом контрольная лампа на комбинации приборов гаснет.

1. Стояночный тормоз
2. Ручка отпускания стояночного тормоза

Рис. 20

После трогания с места автомобиль производит автоматическую блокировку центрального замка. Блокирующие кнопки опускаются. При этом вы можете открыть двери изнутри за ручку двери в любое время.

Управление внешним освещением

Переключатель света находится между дверью водителя и рулевым колесом.

1. Автоматическое включение света
2. Свет выключен
3. Ближний свет включен

Рис. 21

Включение дальнего света производится рычагом комбинированного переключателя, который находится слева на рулевой колонке.
Дальний свет включается, если замок зажигания находится в положении 1 и включен ближний свет.

1. Дальний свет
2. Кратковременный световой сигнал

Рис. 22

Указатели поворота

Комбинированный переключатель находится слева на рулевом колесе.

1. Правый указатель поворота
2. Левый указатель поворота

Рис. 23

При кратком нажатии рычага переключателя указателей поворотов соответствующий указатель поворота мигает три раза.

Стеклоочиститель ветрового стекла

Комбинированный переключатель находится слева на рулевой колонке.

Для включения стеклоочистителя следует повернуть комбинированный переключатель в требуемое положение в зависимости от интенсивности дождя.

Режимы работы стеклоочистителя

0	Стеклоочиститель выключен
I	Прерывистый режим работы (ин- тервал зависит от количества воды)
II	Нормальный режим работы
III	Ускоренный режим работы

Внимание: при замедлении автомобиля до скорости менее чем 5 км/ч или до остановки включенный стеклоочиститель автоматически переключается на ближайшую более низкую ступень режима работы. При разгоне автомобиля до скорости более чем 8 км/ч включенный стеклоочиститель автоматически переключается в исходный режим работы.

Однократное движение щеток стеклоочистителя включается кратким нажатием на наконечник рычага переключателя в направлении стрелки 2. При этом стеклоочиститель выполняет одно движение щеток без подачи воды из бачка стеклоомывателя.
Для включения стеклоомывателя следует нажать на наконечник рычага переключателя в направлении стрелки 2 с переходом точки сопротивления.
Стеклоочиститель производит очистку стекла с подачей воды из бачка стеклоомывателя.
Стеклоочиститель заднего стекла автоматически производит очистку стекла при включенном стеклоочистителе ветрового стекла и включенной передаче заднего хода.

Стеклоочиститель заднего стекла

Переключатель находится на панели управления центральной консоли.

1. Прерывистый режим
2. Стеклоомыватель

Рис. 25

Включение и выключение стеклоочистителя заднего стекла достигается попеременным нажатием на верхнюю часть (1) клавиши переключателя при включенном зажигании.
Для включения заднего стеклоомывателя следует нажать на нижнюю (2) часть клавиши переключателя.
После клавиши переключателя стеклоочиститель будет продолжать работать еще примерно 5 секунд.

Паркование и закрывание автомобиля

Внимание: вынимайте ключ из замка зажигания только после полной остановки автомобиля.

Стояночный тормоз

Для паркования автомобиля следует использовать стояночный тормоз (см. выше)

Блокировка запуска двигателя в автомобиле с МКПП

Включите первую передачу или передачу заднего хода.
Поверните ключ в замке зажигания в положение 0 и извлеките его.
Устройство блокировки пуска включено.

Блокировка запуска двигателя в автомобиле с АКПП

Переведите рычаг управления автоматической коробкой передач в положение \mathbf{P}.
Поверните ключ в замке зажигания в положение 0 и извлеките его.
Устройство блокировки пуска включено.
Внимание: на крутых уклонах поверните передние колеса к краю тротуара.
Поворачивайте рулевое колесо до тех пор, пока фиксатор механизма блокировки рулевого вала не заблокирует его.
Внимание: извлечение ключа из замка зажигания автомобиля с АКПП возможно только в том случае, если рычаг селектора передач находится в положении Р и педаль тормоза не нажата.

Запирание автомобиля ключом

Нажатие на кнопку блокировки $\overline{\text { б }}$ на устройстве дистанционного управления вызывает опускание кнопок блокировки дверей. При этом указатели поворота мигнут три раза. Двери, крышка/дверь багажного отделения и крышка люка топливозаправочной горловины при этом также блокируются.

Системы,

обеспечивающие
безопасность движения

EBV

Система электронного распределения тормозного усилия (EBV) предотвращает излишнее торможение задних колес при малой нагрузке на заднюю ось или при плохом сцеплении колес с дорогой (например на мокрой дороге).

ABS

Антиблокировочная система регулирует давление в тормозной системе таким образом, что при торможении колеса не блокируются. Вследствие этого сохраняется управляемость автомобиля.
При отключенной системе ABS колеса могут быть заблокированы. Автомобиль может занести при торможении. Для движения по бездорожыю вы можете отключить систему ABS. Никогда не отключайте систему ABS при движении по обычным дорогам.
Система ABS действует независимо от дорожных условий, начиная со скорости приблизительно $\mathbf{3} \mathbf{~ к м / ч . ~}$
Если необходимо полное торможение, нажимайте на педаль тормоза с полной силой.
При этом гарантируется действие ABS на всех колесах.
На скользкой дороге система ABS производит регулирование уже при легком торможении, при этом возникает пульсация педали тормоза, что указывает на недостаточное сцепление колес с дорогой и на необходимость согласовать стиль вождения с дорожными условиями.
Если требуется дальнейшее торможение, продолжайте нажимать на педаль тормоза с прежней силой. Только в этом случае вы воспользуетесь всеми преимуществами системы ABS.

> Внимание: если вы едете с прицепом, не оснащенным ABS, то при
> торможении с полной силой возможно его избыточное торможение и потеря сцепления колес с дорогой. Существует опасность потери управления автомобилем. При торможении с полной силой следите за реакцией прицепа через наружные зеркала заднего вида.

Положение автомобиля на траектории движения остается стабильным, если колеса прицепа не блокированы. Антиблокировочная система не освобождает вас от необходимости согласовывать ваш стиль вождения с дорожными и погодными условиями.
Система ABS улучшает управляемость автомобиля и удержание заданной траектории при торможении. Однако система ABS не в состоянии предотвратить последствия, например, несоблюдения безопасной дистанции до впереди идущего автомобиля или превышение скорости при движении на повороте и т.п.

Система BAS

Система экстренного торможения помогает сократить тормозной путь в ситуациях аварийного торможения.
Вы можете использовать все преимущества системы ABS при работе системы экстренного торможения BAS.
При быстром нажатии на педаль тормоза производится максимальное усиление тормозного давления. Если требуется дальнейшее торможение, продолжайте нажимать на педаль тормоза с прежней силой. Если вы отпустите педаль тормоза, то система экстренного торможения BAS отключается.

ASR/ESP

Противобуксовочная система ASR контролирует способность передачи тягового усилия, т.е. передачу крутящего момента между шинами и дорогой.
Если на комбинации приборов мигает предупредительная лампа $\mathbf{\triangle}$, это значит, что включилась антибуксовочная система ASR и существует опасность аварии, так как автомобиль может попасть в занос. В этом случае действуйте следующим образом:

- если световой индикатор начал мигать при трогании с места, то действуйте педалью акселератора более осторожно (ваш разгон должен быть менее интенсивен);
- если световой индикатор начал мигать при движении, то это значит, что дорога слишком скользкая для вашего режима движения, поэтому плавно отпустите педаль акселератора.
Согласуйте ваш стиль вождения с дорожными условиями.
Если вы не примете во внимание это предупреждение, то может произойти занос автомобиля.
Посредством избирательного торможения отдельных колес и ограничения мощности двигателя система ASR/ESP стабилизирует автомобиль. Система ASR/ESP оказывает вам поддержку особенно при трогании с места на мокрой или скользкой дороге.

Внимание: если на комбинации приборов постоянно горит предупредительная

лампа- \triangle ASR/ESP, то система ESP отключена.

Выключайте двигатель и поворачивайте ключ в замке зажигания в положение 0 при: - буксировке автомобиля с поднятым передним/задним мостом;

- проверке стояночного тормоза на стенде для проверки тормозов.
В противном случае активное тормозное воздействие, оказываемое системой ESP или ASR, может привести к блокированию колес и повреждению тормозной системы.
Надлежащее функционирование системы ESP обеспечивается только в том случае, если вы применяете колеса с шинами рекомендуемых размеров.

Выключение ASR

Вы можете отключить регулирование крутящего момента ASR в диапазоне скорости от 0 до 60 км/ч.

Для выключения системы следует нажать на кнопку (1).
При этом на комбинации приборов загорается предупредительная пампа 』 - «Регулирование крутящего момента двигателя отключено".
Систему ASR следует выключать в следующих ситуациях:

- при пользовании цепями противоскольжения;
- при движении по глубокому снегу;
- при движении по песку и гравию.

Активное тормозное воздействие, оказываемое системой ESP для стабилизации направления движения автомобиля, может привести к повреждению тормозной системы.

Включение ASR

Для включения системы следует нажать на кнопку (1) при выключенной системе.
Предупредительная лампа $\mathbf{\text { rаснет на }}$ комбинации приборов. Регулирование крутящего момента двигателя включено, и система ASR снова находится в нормальном эксплуатационном состоянии.
Регулирование тягового усилия автоматически подключается, если вы едете быстрее 60 км/ч или автомобиль попадает в нестабильную ситуацию.

Зашита от кражи

Устройство блокировки пуска (система санкционированного пуска двигателя)

Включение

Устройство блокировки пуска включается при извлечении ключа из замка зажигания.

Выключение

Устройство блокировки пуска выключается при повороте в положение (2).

Противоугонная сигнализационная система

При включенной противоугонной сигнализации срабатывает световая и звуковая тревожная сигнализация при открывании:

- двери;
- крышки/двери багажного отделения; - капота.

Включение противоугонной сигнализационной системы

- Заблокируйте автомобиль с помощью кнопки 흘.
Противоугонная сигнализационная система включается приблизительно через 15 секунд. Контрольная лампа 1 в выключателе мигает.

Выключение противоугонной сигнализационной системы

- Откройте автомобиль с помощью кнопки \square

Противоугонная сигнализационная система выключена.
Если в течение 40 секунд после разблокировки автомобиля не будет открыта ни одна из дверей или крышка/дверь автомобиля, то автомобиль автоматически снова блокируется.
Тревожная сигнализация срабатывает, если автомобиль был заблокирован с помощью ключа, а разблокирован изнутри.

Выключение тревожной сигнализации

С помощью ключа

- Вставьте ключ в замок зажигания. При этом тревожная сигнализация выключится.
Или нажмите кнопку

Устройство защиты от буксировки

Если наклон автомобиля при включенном устройстве защиты от буксировки изменяется, срабатывает звуковая тревожная сигнализация.

Тревожная сигнализация защиты от буксировки срабатывает, например при одностороннем поднимании автомобиля.

Включение устройства защиты от буксировки

Если вы блокируете ваш автомобиль, то устройство защиты от буксировки автоматически включается приблизительно через 30 секунд.

Если вы разблокируете ваш автомобиль, то устройство защиты от буксировки автоматически выключается.

Выключение устройства защиты от буксировки при транспортировке

При транспортировке или погрузке вашего автомобиля выключите устройство защиты от буксировки. Тем самым вы предотвратите ложную тревогу.
Кнопка расположена в потолочной панели управления.

1. Включение защиты отбуксировки
2. Контрольная лампа

Рис. 27

Внимание: если ключ в замке

зажигания находится в положении 2 , то выключение устройства защиты от буксировки невозможно.

- Нажмите на кнопку 1.

Контрольный светодиод 2 на кнопке кратковременно загорается.

- Заблокируйте автомобиль с помощью ключа.

Устройство защиты от буксировки остается выключенным до тех пор, пока вы снова не заблокируете ваш автомобиль.

Устройство защиты салона

Звуковая и световая тревожная сигнализация срабатывают, если ваш автомобиль заблокирован и:

- кто-то разбивает боковые стекла вашего автомобиля и протягивает руку в салон;
- кто-то через открытые боковые окна вашего автомобиля протягивает руку в салон.

Кнопка расположена в потолочной панели управления.

1. Контрольная лампа
2. Устройство защиты салона

выключено

Рис. 28

Включение защиты салона

- Закройте:
- боковые стекла;
- подъемно-сдвижной верхний люк;
- панорамную сдвижную крышу.

До тех пор, пока открыт подъемно-сдвижной верхний люк или панорамная сдвижная крыша, защита салона не может быть активирована.

- Заблокируйте ваш автомобиль с помощью ключа.
Устройство защиты салона включается примерно через 30 секунд.
Не оставляйте какие-либо предметы (например, талисманы или другие подвески) подвешенными к внутреннему зеркалу заднего вида или к ручкам на потолке салона. Тем самым вы предотвратите ложную тревогу.

Выключение устройства защиты салона

Если в заблокированном автомобиле остаются люди или животные, то следует выключить устройство защиты салона. Тем самым вы предотвратите ложную тревогу.
Поверните ключ в замке зажигания в поло*ение $\mathbf{0}$ или 1, или извлеките ключ.
Нажмите на кнопку 2. Контрольный светодиод на кнопке коротко мигает.
Устройство защиты салона остается выключенным до тех пор, пока вы снова не заблокируете ваш автомобиль.

Комбинация приборов

Многофункциональный дисплей (стандарт)

Управление дисплеем производится при помощи клавиш, расположенных слева и справа на облицовке комбинации приборов (рис. 29, поз. 1, 2, 4, 5).

Активация дисплея

Дисплей активируется при выполнении одного из следующих действий:

- при открывании двери водителя;
- при повороте ключа зажигания в положение 1 или 2;
- при кратковременном нажатии на одну из кнопок управления (рис. 29);
- при включении наружного освещения.

Яркость дисплея регулируетсяпри включенном освещении при помощи кнопок или

1. Кнопка управления +
2. Кнопка управления -
3. Многофункциональный дисплей (стандарт)
4. Кнопка управления многофункциональным дисплеем «СБРОС" 5. Кнопка управления многофункциональным дисплеем «МЕНЮ»

Рис. 29

1. Счетчик суточного пробега
2. Положение рычага управления АКП (для автомобилей с автоматической коробкой передач)
3. Часы
4. Температура наружного воздуха
5. Счетчик общего пробега

Рис. 30

Переключение вида индикации дисплея производится нажатием более чем на 1 секунду кнопки вызова меню 5. При этом происходит замена индикации суточного пробега цифровой индикацией скорости. Таким же образом осуществляется обратное переключение.
Для кратковременной замены индикации коротко нажмите на кнопку вызова меню 5 .

Спидометр

В некоторых странах при достижении законодательно допустимой максимальной скорости звучит предупредительный сигнал, например при 120 км/ч.

Сброс счетчика суточного пробега

Установка нуля на счетчике суточного пробега производится удержанием кнопки 4 при активированной индикации суточного пробега.

Установка времени

Последовательно нажимайте кнопку меню 5 до тех пор, пока не начнет мигать индикация разрядов, показывающих единицы и десятки часов. Значение устанавливается при помощи кнопок п+ или
При удержании кнопки нажатой значение изменяется последовательно и непрерывно.
Значения минут устанавливается после нажатия на кнопку 4 (при этом разряды минут начнут мигать) при помощи кнопок или $\boldsymbol{\pi}$.

Перевод некоторых надписей, возникающих на дисплее (при установке немецкого языка)

STANDARD-ANZEIGE	Стандартная индикация
AUS	Выключите (выключено)
AUBENTEMPERATUR	Температура наружного воздуха
AUDIO AUS	Аудио ВыКл
AUFFINDBELEUCHTUNG	Освещение для ориентирования
BELEUCHTUNG	Освещение
DIEBSTAHLWARNUNG ANHANGER	Предупреждение о краже прицепа
DISPLAY AUSWAHL	Выбор дисплея
EIN	Включите (включено)
EINSTELLUNGEN	Установки
EINSTELLUNGEN SCHLUSSELAB-HANGIG	Установки в зависимости от ключа
FAHRZEUG	Автомобиль
FEHLERSPEICHER	Память неисправностей
FREQUENZ	Частота
GESCHWINDIGKEIT	Скорость
GESCHW BEGRENZUNG (WINTERREIFEN)	Ограничение скорости для шин с зимним ри-
сунком протектора	
НEIZUNG	Отопление
KOMBIINSTRUMENT	Комбинация приборов
KEINE STORUNGEN	Установка часов
LICHTSCHALTUNG FAHRLICHT	Неисправностей нет
REISERECHNER	Включение света фар
SCHEINWERFER-AUFSCHALTUNG	Вортовой компьютер
SCHEINWERFER-AUFSCHALTUNG	Выключение света фар
SPEICHER	Память
SUCHLAUF IM AUDIOMODUS EINSTELLEN	Установкапоискарадиостанции врежиме AУдио
TASTENDRUCK IN AUDIOMODUS	Нажатие кнопки в режиме АУдио
TEMPERATURANZEIGE	Индикация температуры
UHRZEIT EINSTELLEN MINUTEN	Установт минут

Выбор единиц измерения температуры наружного воздуха

Активируйте дисплей.
Последовательно нажимайте кнопку меню 5 до тех пор, пока не начнут мигать цифровые разряды индикатора температуры.

- Выберите с помощью кнопки или $\boldsymbol{\text { i }}$ индикациютемпературы в градусах Цельсия $\left({ }^{\circ} \mathrm{C}\right)$ или в градусах Фаренгейта (${ }^{\circ} \mathrm{F}$).

Выбор единиц измерения скорости

Активируйте дисплей.
Последовательно нажимайте кнопку меню 5 до тех пор, пока не начнут мигать цифровые разряды индикатора скорости.

- Выберите с помощью кнопок пли \ddagger индикацию скорости в километрах в час (km) или в милях в час (miles).
Единицы скорости (и дистанции) устанавливаются для следующих функций одной установкой:
- счетчика общего пробега;
- счетчика суточного пробега;
- цифрового индикатора скорости;
- системы SPEEDTRONIC.

Тахометр

Красная маркировка на тахометре показывает диапазон превышения частоты вращения двигателя.
Избегайте режима работы двигателя в диапазоне превышенной частоты вращения. В противном случае вы повредите двигатель. При достижении красной маркировки частота вращения ограничивается автоматически для защиты двигателя.

Примечание: при торможении двигателем возможно превышение частоты вращения. В таком случае вам необходимо правильно выбрать передачу МКПП.

Система управления автомобилем

Система управления активируется после поворота ключа в замке зажигания в положение 1 или 2.
С помощью системы управления вы можете вызвать информацию по вашему автомобилю и произвести установки.
Вы можете вызвать (изменять) не только

следующий срок проведения ТО, но и, например, язык для сообщений на комбинации приборов и многое другое.

Многофункциональный дисплей (High-Line)

Многофункциональный дисплей такого типа является устройством со значительно расширенными возможностями по сравнению со стандартным информационным дисплеем. По сути, дисплей High-Line является информационным интерфейсом объединенной системы управления автомобилем. Общий вид дисплея показан на рис. 31.

1. Счетчик суточного пробега
2. Спидометр
3. Счетчик общего пробега
4. Положение рычага управления АКП (для автомобилей с автоматической коробкой передач)
5. Часы
6. SPEEDTRONIC
7. Температура наружного воздуха

Рис. 31

Многофункциональное рулевое колесо

Управление индикацией на дисплее и установками в системе управления производится с помощью кнопок на многофункциональном рулевом колесе (см. рис. 32).
Управление основано на простой системе навигации, содержащей в себе ряд меню и подменю, схема которых приведена на рис. 33.
Если меню делится на подменю, то перемещение внутри подменю осуществляется при помощи кнопок пт

Количество меню зависит от комплектации автомобиля, в частности, от того, установлена ли на вашем автомобиле навигационная система или аудиосистема Audio 20.

Обзор меню

Меню 1 Стандартная индикация	Цифровой спидометр
	Вызов системы ASSYST
	Управление кассетной декой
Меню 2 Аудио	Выбор радиостанции
	Управление проигрывателем компакт-дисков
	Управление кассетной декой
Меню 3 Навигационная система	Активирование сопровождения к цели
Меню 4 Память неисправностей	Выводит на дисплей количество неисправностей и их описание
Меню 5 Установки	Подменю «Комбинация приборов"
	Подменю «Освещение"
	Подменю «Автомобиль"
Меню 6 Бортовой компьютер	Статистика расхода топлива с момента старта
	Статистика расхода с момента последней установки на нуль
	Подменю «Отопление"
Меню 7 Телефон	Управление телефоном, подключенным к системе громкой связи автомобиля

Особенности пользования некоторыми функциями

Меню 2 Аудио

Выбор радиостанции

Включите радиоприемник, см. к этому отдельное "Руководство по эксплуатации".
Нажимайте на кнопку или до тех пор, пока вы не увидите на дисплее название уже настроенной радиостанции.
Выбор заранее настроенных радиостанций

Вводитьновыерадиостанциивпамятьвыможете только с помощьо радиоприемника, см. к этому отдельное «Руководство по эксплуатации».

Управлять радиоприемником вы можете, как обычно.

1. Радиостанция

Рис. 34

Управление проигрывателем компакт-дисков

Включите радиоприемник и выберите проигрыватель компакт-дисков (см. отдельное «Руководство по эксплуатации»).
 пока вы не увидите на дисплее установки для проигрываемого компакт-диска.

Нажимайте на кнопку или до тех пор, пока вы не найдете желаемое название проигрываемого произведения.

Меню 3 Навигационная система

Как активировать сопровождение к цели, прочитайте в отдельном "Руководстве по эксплуатации" для системы COMMAND или для Audio 30 APS.

Меню 4 Память неисправностей

В меню Fehlerspeicher (память неисправностей) вы можете вызвать на дисплей список возникших неисправностей.
Индикация на дисплее зависит от того, возникли неисправности или нет.

Внимание: система управления

 регистрирует неисправности и предупреждения только определенных систем. Поэтому следите за тем, чтобы ваш автомобиль был в исправном состоянии.Нажимайте на кнопку или до тех пор, пока вы не увидите на дисплее меню FEHLERSPEICHER.

При отсутствии неисправностей

Если неисправности отсутствуют, то на дисплей выводится сообщение KEINE STORUNGEN (неисправностей нет).

При возникновении неисправностей
При возникновении неисправностей на дисплее указано количество неисправностей:

Нажимая кнопки или, можно последовательно просмотреть сообщения о неисправностях.
Если вы снова поворачиваете ключ в замке зажигания в положение 1 или 2 , то содержимое памяти неисправности стирается.

Подтверждение неисправностей

Если неисправность возникла во время поездки или после того, как вы повернули ключ в замке зажигания в положение 1 или 2 , то для подтверждения возникшего на дисплее сообщения следует нажать на кнопки 투표

Меню 5 Установки

В меню EINSTELLUNGEN (установки) находится список подменю, с помощью которых можно выполнить индивидуальные установки для вашего автомобиля.

Подменю в меню "Установки"
Действия
Нажмите на кнопку или На дисплее вы видите перечень подменю.
Нажмите на кнопку или Световая полоса устанавливается на следующее подменю. При этом кнопкой вы перелистываете вниз, кнопкой вы перелистываете вверх.
В пределах подменю вы устанавливаете световую полосу с помощью кнопки пли на отдельные функции.
Сами установки вы производите с помощью кнопки ит ил 톨.
Приведенный ниже список показывает, какие установки вы можете выполнить в отдельных подменю.

Подменю «Комбинация приборов»

В подменю KOMBI-INSTRUMENT (комбинация приборов) вы можете задать вид индикации на комбинации приборов. Вы можете производить следующие установки:

- установка времени;
- выбор единиц измерения температуры;
- выбор единиц измерения скорости;
- выбор языка;
- выбор дисплея.

Установка времени

Действия

Нажимайте кнопку $\boldsymbol{\Psi} \boldsymbol{\pi}$ или дох пор, пока не будет выделено подменю UHRZEIT EINSTELLEN (установка времени).

- Нажимайте кнопку или до тех пор, пока на дисплее не появится меню UHRZEIT

EINSTELLEN STUNDEN (установка индикации текущего часа).
Нажимайте кнопку или до тех пор, пока вы не установите нужное значение.

Действия

Нажмите кнопку

На дисплее появляется меню UHRZEIT EINSTELLEN Minuten (установка минут).
Нажимайте кнопку + или до тех пор, пока вы не установите нужное значение минут.

Выбор единицы измерения

 температуры
Действия

Нажимайте кнопку или 요 то пор, пока не будет выделено подменю TEMPERATURANZEIGE (индикация температуры).
Нажимайте кнопку или до тех пор, пока на дисплее не появится меню TEMPERATURANZEIGE (индикация температуры).
Световая полоса находится на действующей установке.
Выберите с помощью кнопки $\boldsymbol{\mp}$ или единицы измерения температуры в градусах Цельсия (${ }^{\circ} \mathrm{C}$) или в градусах Фаренгейта (${ }^{\circ} \mathrm{F}$).

[^0]Нажимайте кнопку или до тех пор, пока на дисплее не появится меню TEXT (текст).
Световая полоса находится на действующей установке.
Выберите с помощью кнопки или язык, на котором должны выдаваться на многофункциональном дисплее сообщения системы управления. Вы можете выбирать между следующими языками:

- немецким;
- английским;
- итальянским;
- французским;
- испанским.

Выбор дисплея

С помощью этой установки вы изменяете постоянную индикацию в левом нижнем углу дисплея.

Действия

Нажимайтекнопку или дотехпор, поканебудет выделено подменю KOMBIINSTRUMENT (комбинация приборов).
Нажимайте кнопку или до тех пор, пока на дисплее не появится меню DISPLAY AUSWAHL (выбор дисплея).
Световая полоса находится на актуальной установке.
Выберите с помощью кнопки или один из двух устанавливаемых по умолчанию видов индикации:

- GESCHWINDIGKEIT (скорость);
- AUSSENTEMPERATUR (температура наружного воздуха).

Подменю "Освещение"

В подменю BELEUCHTUNG (освещение) вы можете установить режим работы освещения вашего автомобиля.
Вы можете выполнить следующие установки:

- установка постоянно включенного света фар;
- установка ориентировочного освещения;
- выключение наружного освещения с выдержкой времени.

Установка постоянно включенного ближнего света фар при движении Действия

Нажимайте кнопку \pm или до тех пор, пока не будет выделено подменю BELEUCHTUNG (освещение).
Нажимайте кнопку ве или до тех пор, пока на дисплее не появится меню LICHTSCHALTUNG FAHRLICHT (включение света фар).
Световая полоса находится на действующей установке.

- Выберите с помощью кнопки $\boldsymbol{+ 1}$ или 표 хотите ли вы сделать включение фар автоматическим или будете менять режим переключения вручную. Этот выбор невозможен в странах, в которых законодательно предписано движение с постоянно включенным светом фар.
Если вы установили постоянно включенный свет фар, а переключатель света стоит на 0 , то при работающем двигателе автоматически включены приборы наружного освещения и ближний свет фар.
Если вы поворачиваете переключатель света в другое положение, то включается соответствующий свет.

Установка ориентировочного освещения

Если вы включаете освещение для ориентирования, то в темноте после разблокировки автомобиля с помощью ключа включаются:

- габаритные огни;
- противотуманные фары.

Ориентировочное освещение выключается, если вы:

- открываете дверь водителя;
- вставляете ключ в замок зажигания;
- блокируете автомобиль с помощью ключа.
Освещение для ориентирования автоматически выключается через 40 секунд.

Действия

Нажимайте кнопку +I или до техпор, пока небудетвыделеноподменюBELEUCHTUNG (освещение).
Нажимайте кнопку или до тех пор, пока на дисплее не появится меню

AUFFINDBELEUCHTUNG (освещение для ориентирования).
Световая полоса находится на действующей установке.
Выберите с помощью кнопки или 툐 требуемое значение.
Освещение для ориентирования будет включено или выключено.

Выключение наружного освещения с выдержкой времени

C помощью функции SCHEINWERFER-AUFSCHALTUNG (выключение света фар) вы можете установить, должен ли и как долго должен гореть наружный свет после остановки двигателя.
Если вы установили функцию выключения освещения с выдержкой времени, то после выключения двигателя горят:

- габаритные огни;
- задние габаритные огни;
- противотуманные фары.

Вы можете в течение 10 минут заново активировать эту функцию, для чего следует открыть дверь.
Если после вынимания ключа вы не открываете ни одну из дверей, то свет выключается через 60 секунд.

Действия

Нажимайте кнопку + или до тех пор, пока не будет выделено подменю BELEUCHTUNG (освещение).
Нажимайте кнопку или до тех пор, пока на дисплее не появится меню SCHEINWERFER-AUFSCHALTUNG (выключение света фар).
Световая полоса находится на действующей установке.
Выберите с помощью кнопки или \boldsymbol{E} время, по истечении которого свет должен быть выключен.
При этом вы можете выбрать:

- 0 секунд: функция выключения освещения с выдержкой времени выключена;
$-15,30,45$ или 60 секунд, в течение которых освещение с выдержкой времени включено.
Вы можете временно выключить функцию выключения освещения с выдержкой времени: для этого поверните для этого ключ в замке зажигания в положение 0 , затем поверните его в положение 2 и верните обратно в положение 0 или 1.
Функция выключения освещения с выдержкой времени будет выключена. Как только вы снова в следующий раз выключите двигатель, она снова включится.

Подменю "Автомобиль"

Установка режима настройки радио в режиме АУдио
C помощью функции SUCHLAUF IM AUDIOMODUS EINSTELLEN (установка поиска радиостанции в режиме аудио) вы можете установить, какой функцией будет наделена кнопка или при поиске в меню AUDIO (аудио).

Действия

Нажимайтекнопку или дотехпор, пока не будет выделено подменю FAHRZEUG (автомобиль).
Нажимайте кнопку или до тех пор, пока на дисплее не появится меню TASTENDRUCK IN AUDIOMODUS (нажатие кнопки в режиме АУдио).
Световая полоса находится на действующей установке.

С помощью кнопок или вы можете выбрать одну из двух опций:

- FREQUENZ (частота) (поиск радиостанции в частотном диапазоне);
- SPEICHER (память) (выбор следующей запомненной радиостанции).

Предупреждение о краже прицепа
С помощью этой функции вы можете включать и выключать предупреждение о краже прицепа.

Действия

Нажимайте кнопку + или до тех пор, пока не будет выделено подменю FAHRZEUG (автомобиль).
Нажимайте кнопку или до тех пор, пока не будет выделено меню DIEBSTAHLWARNUNG ANHANGER (предупреждение о краже прицепа).
Световая полоса находится на действующей установке.
Включите (EIN) или выключите (AUS) с помощью кнопки 표 или функцию предупреждения о краже прицепа.

Установка зависимости от ключа
С помощью этой функции задается, должны ли введенные в память регулировки для передних сидений и прочие установки системы управления запоминаться в зависимости от положения ключа.

Действия

Нажимайтекнопку или до техпор, пока не будет выделено подменю FAHRZEUG (автомобиль).
Нажимайте кнопку илиядотехпор, пока не будет выделено меню EINSTELLUNGEN SCHLUSSELAB-HANGIG (установки в зависимости от ключа).
Световая полоса находится на актуальной установке.
Включите (EIN) или выключите (AUS) с помощью кнопки или функцию установки зависимости от ключа.

Подменю "Отопление"

Функция - установка времени включения
Подменю HEIZUNG (отопление) вы видите только в том случае, если ваш автомобиль имеет систему отопления независимого действия.

Меню 6 Бортовой компьютер

В меню REISERECHNER (бортовой Компьютер) вы можете вызвать на дисплей статистические данные вашего автомобиля. В вашем распоряжении имеется приведенная ниже информация:

- статистика расхода с момента пуска двигателя;
- статистика расхода с момента последнего сброса.

Статистика расхода топлива с момента старта

Действия

Нажимайте кнопку или до тех пор, пока на дисплее не появится меню REISERECHNER (бортовой компьютер).
Нажимайте кнопку или до тех пор,

пока на дисплее не появится следующее изображение.

1. Дистанция в км, пройденная с момента пуска двигателя.
2. Время, прошедшее с момента пуска двигателя.

Рис. 49

3. Средняя скорость с момента пуска двигателя.
4. Средний расход топлива с момента пуска двигателя.

Рис. 50

Статистика расхода топлива с момента последнего сброса

Действия

Нажимайте кнопку или до тех пор, пока на дисплее не появится меню REISERECHNER (бортовой компьютер).
Нажимайте кнопку или до тех пор, пока на дисплее не появится меню
AB RESET (с момента сброса).
Нажимайте кнопку или до тех пор, пока на дисплее не появится следующее изображение.

Если вы повторяете опрос бортового компьютера, сначала вызовите на дисплей последнюю запрошенную функцию. Если вы поворачиваете ключ в замке зажигания в положение 0 или вынимаете его, то приблизительно через четыре часа сбрасываются все значения, относящиеся к последнему пуску двигателя. Если в течение этого времени вы еще раз поворачиваете ключ в замке зажигания в положение 1 или 2, то эти значения не сбрасываются.

7. Среднестатистическая скорость с момента последнего сброса
8. Среднестатистический расход топлива с момента последнего сброса

Меню 7 Телефон

C помощью функций в меню TEL (телефон) вы можете пользоваться вашим телефоном, если вы подсоединили его к громкоговорящей установке и включили.
В зависимости от того, в каком состоянии находится ваш телефон, на дисплее появляются различные сообщения:

- если телефон выключен, то на многофункциональном дисплее отображается сообщение TEL AUS (телефон выкл.);
- если вы еще не ввели номер PIN кода, то на дисплее отображается сообщение TEL PIN (ввести PIN-код телефона).
- введите PIN-код через телефон.

Телефон ищет сеть. В течение этого времени на дисплее нет индикации.
Как только телефон найдет сеть, на дисплее появится соответствующее сообщение.
После появления этого сообщения о готовности к работе вы можете пользоваться телефоном через систему управления.

1. Оператор сети

Рис. 53
Прием телефонного разговора
Если ваш телефон готов к эксплуатации, вы можете в любое время принять разговор. На дисплее отображается следующее сообщение:

При нажатии кнопки разговор будет принят. При нажатии кнопки разговор будет завершен.

Системыподдержания скорости ТЕМПОМАТи СПИДТРОНИК

С помощью систем ТЕМПОМАТ и СПИДТРОНИК можно регулировать скорость автомобиля.

Система ТЕмПОМАТ

Эта система поддерживает скорость автомобиля постоянной.
Применяйте ТЕМПОМАТ только в том случае, если в течение длительного времени вы можете ехать с постоянной скоростью. Вы можете записать в память любую скорость движения выше $30 \mathrm{~km} / 4$.
Внимание: ТЕМПОМАТ является лишь вспомогательным средством, облегчающим вам управление автомобилем. Ответственность за скорость движения и своевременное торможение всегда лежит на вас. На скользкой дороге не включайте ТЕМПОМАТ. Существует опасность заноса автомобиля. Система регулирует скорость движения автомобиля без учета дорожных и погодных условий. Колеса могут провернуться, а это приведет к заносу автомобиля. Выключайте систему при гололедице или тумане.
Рычаг переключателя TEMПОМАТА - это самый верхний рычаг слева на рулевой колонке.

Активирование ТЕМПОМАТА

Активация системы производится нажатием рычага переключателя в направлении 6. При активации системы световой индикатор LIM (3), расположенный на рычаге переключателя, не светится.

1. Ввод в память актуальной или более высокой скорости
2. Вызов последней записанной в память скорости
3. Индикатор LIM
4. Ввод в память актуальной или более низкой скорости
5. Выключение ТЕМПОМАТА
6. Переключение между ТЕМПОМАТОМ и системой СПИДТРОНИК

Рис. 55

Ввод в память актуальной скорости

Разгоните автомобиль до желаемой скорости.
Кратко нажмите рычаг переключателя ТЕМПОМАТА вверх (стрелка 1) или вниз (стрелка 4). Достигнутая скорость будет записана в память.
Отпустите педаль акселератора. При этом ТЕМПОМАТ активируется.
При движении на подъем или под уклон возможно, что ТЕМПОМАТ не может удерживать скорость. Если подъем или уклон кончаются, снова устанавливается запомненная скорость.

Выключение ТЕМПОМАТА

Для выключения системы следует выполнить одно из перечисленных действий: в вашем распоряжении есть несколько возможностей для выключения: затормозить, нажать педаль акселератора или коротко нажать рычаг переключателя TEMПОМАТА в направлении стрелки 5. После этого ТЕМПОМАТ будет выключен. Последняя установленная скорость останется в памяти.
Последняя записанная скорость стирается, если вы выключаете двигатель.

Установка скорости

Коротко нажмите рычаг переключателя ТЕМПОМАТА в направлении стрелки 2. При этом ТЕМПОМАТ устанавливает последнюю записанную в память скорость. Отпустите педаль акселератора.

Установка более высокой скорости

Коротко нажмите рычаг переключателя ТЕМПОМАТА в направлении стрелки 1 и держите его нажатым до тех пор, пока вы не достигнете желаемой скорости.
Отпустите рычаг переключателя TEMПОМАТА. Новое значение скорости записано в память.
Если вы разгоняете автомобиль с помощью рычага переключателя TEMПOMATA, то после отпускания рычага переключателя ТЕМПОМАТА скорость запоминается.

Внимание: выключение

ТЕМПОМАТА путем нажатия педали акселератора невозможно. Если вы кратковременно ускоряете для обгона, то после этого TEMПOMAT снова устанавливает последнюю записанную скорость.

Установка более низкой скорости

НажмитерычагпереключателяТЕМПОМАТА в направлении стрелки 4 и держите его нажатым до тех пор, пока вы не достигнете желаемой скорости.

Отпустите рычаг переключателя TEMПОМАТА. Новая скорость будет записана в память.
Если вы замедляете автомобиль с помощью рычага переключателя ТЕМПОМАТА, то после отпускания рычага переключателя TEMПOMATA скорость запоминается.
В автомобилях с автоматической коробкой передач при значительном замедлении с помощью рычага переключателя TEMПОМАТА (путем нажатия в направлении стрелки 4) АКПП переключается на более низкую передачу.

Точная установка с шагом
 \section*{в 1 км/час}

Для ускорения нажмите рычаг переключателя TEMПОМАТА в направлении стрелки 1.
Для замедления нажмите рычаг переключаТеля ТЕМПОМАТА в направлении стрелки 4.
Последняя записанная скорость стирается, если вы выключаете двигатель.

Кратковременное увеличение скорости

При активированной системе ТЕМПОМАТ можно кратковременно разогнать автомобиль. После отпускания педали акселератора снова устанавливается записанная скорость.

Улучшение удобства управления коробкой передач

Нажмите слегка на педаль акселератора, если вы включаете сцепление.
При этом повышается удобство управления коробкой передач.
Если вы снова отпустите педаль акселератора, то снова устанавливается записанная скорость.
Если рычаг уоравления коробкой передач находится в нейтральном положении, после того как вы выключили сцепление, то частота вращения двигателя может кратковременно увеличиться.

Система спидтРоник

Система спиДТРоНИК следит за тем, чтобы установленная скорость не была превышена.
Скорость можно ограничить двумя способами:
переменное ограничение - для ограничения скорости, например в населенных пунктах;
постоянное ограничение - для долгосрочного ограничения скорости, например для эксплуатации в зимний период.
Индицируемая на спидометре скорость может незначительно отличаться от установленной скорости.
Можно изменить единицу измерения скорости с помощью системы управления.
Рычаг переключателя СПИДТРОНИК - это самый верхний рычаг слева на рулевом колесе.

1. Ввод в память актуальной или более высокой скорости
2. Вызов последней записанной в память скорости
3. Индикатор LIM
4. Ввод в память актуальной или более низкой скорости
5. Выключение ТЕМПОМАТА
6. Переключение между ТЕМПОМАТОМ и системой СПИДТРОНИК Рис. 56

Переключение между системой переменного ограничения скорости СПИДТРОНИК и системой ТЕМПОМАТ
Переключение осуществляется нажатием на рычаг переключателя в направлении стрелки 6. Если световой индикатор LIM (3) не светится, то это значит, что активирована система ТЕМПОМАТ, если светится, то активирована система СпиДТРОНИК, и установленное ограничение скорости будет отображено на дисплее комбинации приборов.

Внимание: вы не можете выключить СпиДТРОНИК посредством торможения. Используйте СПИДТРОНИК только в том случае, если вы уверены, что вы не должны будете внезапно ехать быстрее, чем допускает установленное ограничение скорости.

Внимание: установленное ограничение скорости можно преодолеть в том случае, если нажать педаль акселератора с преодолением точки сопротивления (так, как при реализации режима кик-даун для автомобилей с автоматической коробкой передач). При смене водителей обращайте внимание на установленную скорость.

Запись в память актуального ограничения скорости

Коротко нажмите рычаг переключателя вверх (направление 1, рис. 52). При этом индицируемая скорость запоминается с округлением до значения следующего более высокого десятка.

При кратком нажатии на рычаг переключателя (направление 4) индицируемая скорость запоминается с округлением до значения следующего более низкого десятка.
На спусках, несмотря на ограничитель, может быть превышена скорость.
В этом случае раздается звуковой сигнал, и на дисплее в комбинации приборов мигает значение установленной скорости.
В этом случае при необходимости тормозите самостоятельно.

Вызов индикации запомненного ограничения скорости

Коротко нажмите рычаг переключателя в направлении стрелки 2.
Если скорость движения автомобиля превышает последнее запомненное ограничение не более чем на 30 км/ч, то ограничитель снова устанавливает эту запомненную скорость.
Точная установка производится с шагом в $10 \mathrm{~km} / 4$.

Установка более высокого ограничения скорости

Производится краткими нажатиями на рычаг переключателя в направлении стрелки 1 или удержанием рычага в нажатом положении до достижения желаемой скорости.

Установка более низкого ограничения скорости

Производится краткими нажатиями на рычаг переключателя в направлении стрелки 4 или удержанием рычага в нажатом положении до достижения желаемой скорости.

Точная установка с шагом в 1 км/ч

Установка более высокого ограничения скорости
Производится краткими нажатиями на рычаг переключателя TEMПОМАТА в направлении стрелки или удержанием рычага в нажатом положении до достижения желаемой скорости.

Выключение переменного ограничителя скорости спиДТРОНИК

ДлявыключениясистемысПиДТРОНИК следует выполнить одно из перечисленных действий: кратко нажать рычаг переключателя в направлении стрелки 5 (ограничитель скорости будет выключен) или путем нажатия на рычаг переключателя в направлении стрелки 6 переключить систему в режим TEMIIOMAT.
Система также выключится при нажатии на педаль акселератора с преодолением точки сопротивления, если при этом скорость автомобиля будет ниже установленной скорости не менее чем на 20 км/ч.

1. Ввод в память актуальной или более высокой скорости
2. Вызов последней записанной в память скорости
3. Индикатор LIM
4. Ввод в память актуальной или более низкой скорости
5. Выключение ТЕМПОМАТА Рис. 57

Долговременное ограничение скорости системой СПИДТРОНИК

С помощью системы управления вы можете установить постоянное значение ограничения скорости в диапазоне от $160 \mathrm{~km} /$ ч (например, для эксплуатации автомобиля с шинами с зимним рисунком протектора) до максимальной скорости.
Внимание: в таком случае вы не сможете превысить установленное ограничение скорости, даже если нажмете педаль акселератора с преодолением точки сопротивления (кик-даун).

Незадолго до достижения установленной скорости ее значение отображается на многофункциональном дисплее.
Долговременный ограничитель скорости СПИДТРОНИК остается активным также при выключенном переменном ограничителе скорости.

Установка долговременного ограничения скорости СПИДТРОНИК

Поверните ключ в замке зажигания в положение 1 или 2.
Нажимайте кнопку или до тех пор, пока на дисплее не появится меню EINSTELLUNGEN (установки).
Нажимайте кнопку $\boldsymbol{\text { n }}$ ил ${ }^{\text {玉 }}$ дотех пор, пока не будет выделено подменю FAHRZEUG (автомобиль).
Нажимайте кнопку или дотех пор, пока на дисплее не появится меню GESCHW. BEGRENZUNG (WINTERREIFEN) (ограничение скорости (шины с зимним рисунком протектора). Световая полоса находится на действующей установке.
Выберите с помощью кнопки или желаемое значение ограничения.

Рис. 58

При этом вы можете выбирать между следующими опциями:

- AUS (ВЫКЛ), постоянный ограничитель скорости СПИДТРОНИК выключен;
-160 км/ч;
-190 км/ч;
$-210 \mathrm{~km} / 4 ;$
$-240 \mathrm{~km} / 4$.

Система электронного регулирования уровня кузова автомобиля (ENR)

Задний мост вашего автомобиля оснащен упругими пневматическими элементами с электронным регулированием уровня кузова (ENR). С помощью ENR кузов автомобиля независимо от степени загрузки удерживается на одном и том же уровне.

Ручной режим

Откройте крышку или дверь багажного отделения.
Нажимайте кнопку 2 на правой боковой стенке в задней части салона/багажного отделения в течение 2 секунд в желаемом направлении.
Система ENR переключается в ручной режим. Во время поднятия или опускания кузова мигают световой индикатор ENR в комбинации приборов и световой индикатор 3 в кнопке ENR-off на заднем пульте управления.

1. ВКЛ / ВЫКЛ режим регулирования (ENR-Off)
2. Опустить / Поднять
3. Контрольная лампа

Рис. 59

Опускание кузова автомобиля

Нажмите на кнопку 2 внизу и держите ее нажатой до тех пор, пока уровень кузова автомобиля не достигнет желаемого положения.
Подъем и опускание прекращаются автоматически, если кузов автомобиля достиг самого высокого или самого низкого уровня.

Установка нормального уровня

Коротко нажмите на кнопку 2 вверху или внизу.
Система ENR поднимает или опускает кузов автомобиля автоматически до нормального уровня.

Если вы хотите остановить кузов автомобиля в каком-то определенном положении, то еще раз кратко нажмите кнопку 2 или нажмите кнопку ENR-off (1) в любом направлении.
Если во время эксплуатации ENR возникает критическая неисправность, то световой индикатор в комбинации приборов горит постоянно, и система ENR деактивируется.

Предупреждение о высоте уровня кузова

Если уровень кузова автомобиля во время езды слишком высокий или слишком низкий, то световой индикатор в комбинации приборов мигает.
ENR обеспечивает скорейшую адаптацию уровня кузова.

Внимание: пока горит контрольная лампа, ведите автомобиль осторожно, так как не исключены повреждения ходовой части или нестабильность ходовых качеств автомобиля.

После произведенной адаптации световой индикатор в комбинации приборов гаснет.

Деактивация системы ENR

Система ENR деактивируется автоматически:

- если вы выключаете двигатель и аккумуляторная батарея недостаточна заряжена;
- после повторного поднимания/опускания кузова автомобиля (перегрев компрессора).
Если вы ставите автомобиль на стоянку (зажигание выключено, ключ извлечен), то система ENR остается активной еще 5 минут. Затем, во избежание разряда аккумуляторной батареи, она переходит в состояние покоя.
Систем ENR снова активируется при разблокировании или открывании одной из дверей или при включении зажигания.

Система ПАРКТРОНИК (PTS)

Система ПАРКТРОНИК является электронным устройством сигнализации расстояния для предупреждения наезда при парковании и сигнализирует вам оптически и акустически о расстоянии между вашим автомобилем и препятствием.
Система ПАРКТРОНИК автоматически активирована, если вы включаете зажигание и отпускаете стояночный тормоз.
При скорости выше 18 км/ч система ПАРКТРОНИК выключается. При более низкой скорости система ПАРКТРОНИК снова включается.
Система ПАРКТРОНИК контролирует ситуацию парковки при помощи шести датчиков в переднем бампере и четырех датчиков в заднем бампере окружение вашего автомобиля.

1. Датчики в переднем бампере

Рис. 60

Радиус действия датчиков

Датчики должны быть свободными от грязи, льда и снега, иначе они не могут правильно функционировать. Производите регулярно очистку датчиков, избегая их царапания и повреждения.

В особенности обращайте внимание при парковании на объекты, которые находятся ниже или выше датчиков, например, цветочные горшки или дышла прицепов. Система ПАРКТРОНИК не распознает такие предметы вблизи. Они могут повредить ваш автомобиль.
Работа системы ПАРКтРОНиК может быть нарушена из-за наличия источников ультразвука (например, пневматическая тормозная система грузовых автомобилей или пневматический молот), наличия навесных агрегатов на автомобиле, таких, как, например, системы для перевозки грузов или велосипедов.

Рис. 62

Механическая коробка передач

Включена передача переднего хода или нейтральная	Активирована передняя зона
Включена передача заднего хода	Активирована передняя и задняя зона

Автоматическая коробка передач

Положение селектора передач	Активация сигнализаторов
D	Активирована передняя зона
R или N	Активирована передняя и задняя зоны
P	Ни один из сигнализаторов не активирован

Если в этой зоне находится препятствие, горят все сигнализаторы и звучит предупредительный звуковой сигнал. Если расстояние меньше минимального, то возможно отсутствие отображения этой дистанции.

Сигнализаторы

Сигнализаторы показывают расстояние между датчиками и препятствием. Сигнализатор для передней зоны находится в середине на панели приборов. Сигнализатор для задней зоны находится сзади в обивке потолка.

Сигнализатор передней зоны:

1. Левая сторона автомобиля
2. Правая сторона автомобиля

Рис. 63

Сигнализатор подразделен для каждой стороны автомобиля на шесть желтых и два красных сегмента.
Если первый желтый сегмент загорается в полнакала, то система ПАРКТРОНИК готова к измерению.
Если горят только красные сегменты всех сигнализаторов, то имеет место неисправность.
Активация сигнализаторов определяется направлением движения автомобияя.

Если ваш автомобиль приближается к препятствию, то в зависимости от расстояния загораются один или несколько сегментов.
Начиная с первого красного сегмента, вы слышите дополнительно предупредительный звуковой сигнал в течение приблизительно трех секунд. При этом расстояние сокращается до минимальнoro.
Включение и выключение системы производится попеременным нажатием на клавишу

1. При включении системы светится индикатор 2.

При установленном прицепе система ПАРКТРОНИК для задней части выключена.

Варианты

организации
багажного отделения
Варианты организации пассажирского и багажного отсеков

Рис. 65

Самопомощь

Где что искать?

Знак аварийной остановки и аптечка
Знак аварийной остановки находится в вещевом отделении в левой передней двери.

Аптечка

Аптечка находится в вещевом отсеке под сиденьем переднего пассажира.
Регулярно проверяйте срок годности аптечки и при необходимости меняйте содержимое.

Orнетушитель

Огнетушитель находится с правой стороны, рядом с основанием сиденья на полу.

CD-чейнджер

CD-чейнджер находится под сиденьем переднего пассажира.
Вы можете его достать со стороны задней части салона.
С более подробной информацией вы можете ознакомиться в отдельном «Руководстве по эксплуатации» вашей аудиосистемы.

Комплект бортового инструмента

Дополнительное вещевое отделение находится в задней части салона автомобиля с правой стороны.

В коротком автомобиле откиньте вверх заднее сиденье.
Откиньте ручку поворотной задвижки 1 и поверните ее влево. Откройте боковую крышку.
Отстегните стяжную ленту.
Снимите крышку набора инструментов.

Комплект бортового инструмента

1. Комплект TIREFIT для временного ремонта шин
2. Шаровая головка
3. Комплект бортового инструмента
4. Домкрат
5. Электрический воздушный насос Рис. 69

Аварийное

открывание/закрывание

Разблокировка автомобиля

Разблокировка двери переднего пассажира

Двери автомобиля больше не поддаются блокировке или разблокировке ключом. В этом случае пользуйтесь аварийным ключом.

Потяните за фиксатор 1 и одновременно извлеките в направлении стрелки аварийный ключ 2 из основного ключа.

3. Разблокировка
4. Блокировка

Рис. 71

Откройте дверь переднего пассажира аварийным ключом. Для этого установите аварийный ключ до упора в замок двери и поверните его вправо.
Если вы открываете разблокированную дверь переднего пассажира, то при этом дополнительно разблокируется дверь водителя
Если вы открываете ваш автомобиль аварийным ключом, то срабатывает противоугонная система (EDW). Имеются следующие возможности выключения тревожной сигнализации:

- нажать на кнопку или на ключе;
- установить ключ в замок зажигания.

Блокировка автомобиля

Если автомобиль не поддается больше блокировке ключом, произведите блокировку автомобиля следующим образом:

- закройте дверь водителя;
- нажмите на переключатель центрального замка центральной консоли;
- проверьте, видна ли еще блокирующая кнопка на двери переднего пассажира. Нажмите ее при необходимости вниз рукой. Заблокируйте дверь переднего пассажира аварийным ключом.
При необходимости заблокируйте крышку/дверь багажного отделения аварийным ключом.

Замена батарейных элементов ключа

Ключ

Если разряжены батарейные элементы ключа, то вы больше не можете производить блокировку или разблокировку автомобиля.
Заменяйте батарейные элементы только того же или рекомендованного изготовителем типа.

Извлеките аварийный ключ 1.
Установите аварийный ключ поперек в образовавшееся отверстие.
Отсек для батарейных элементов раз блокирован.
Вытяните отсек для батарейных элементов ключа.

- Извлеките старые батарейные элементы.

- Установите новые батарейные элементы 3 положительным полюсом вверх под контактную пружину 4.
- Задвиньте отсек для батарейных элементов обратно в корпус ключа.
- Задвиньте аварийный ключ 1 обратно в корпус ключа.

Подъемно-сдвижной верхний люк/панорамная сдвижная крыша

Механическое открывание/закрывание подъемно-сдвижного верхнего люка/панорамной сдвижной крыши

Привод находится под потолочной панелью управления.
Снимите левую крышку плафона лампы на потолочной панели управления.
Возьмите вороток из сумки с документами на автомобиль в перчаточном ящике.
Установите вороток в шестигранное отверстие в потолочной панели управления.
Откройте или закройте верхний люк путем вращения воротка в соответствующем направлении.

Ручное выключение
блокировки коробки
передач при стоянке

1. Крышка
2. Рычаг управления АКП
3. Кнопка разблокировки

Рис. 74

При неисправности электрооборудования блокировку рычага управления АКП в положении Р вы можете выключить механически. Например, для буксировки автомобиля.

Снимите крышку 1 с помощью подходящего предмета (например, ключа).
Нажмите вниз кнопку разблокировки 3 на правой стороне.
Рычаг селектора АКПП разблокирован.
Переведите рычаг 2 управления АКПП, удерживая кнопку разблокировки 3 в положение \mathbf{N}.
После этого рычаг управления АКПП будет свободно перемещаться до тех пор, пока он снова не будет переведен в положение \mathbf{P}.

Замена ламп

Лампы и фонари являются существенными компонентами безопасности автомобиля. Поэтому обращайте внимание на то, чтобы все лампы всегда функционировали.

Перед заменой ламп выключайте освещение во избежание короткого замыкания.
Берите лампы в руки, только пользуясь чистой, не оставляющей ворсинок матерчатой салфеткой. Руки должны быть сухими и чистыми.
Применяйте только лампы, рассчитанные на напряжение 12 В, одного и того же типа и соответствующей мощности.
Регулярно проверяйте регулировку фар.
Для замены светодиодов обратитесь на одну из станций ТО "Мерседес-Бенц".

Замена передних ламп

Выключите освещение.
Откройте капот.

1. Крышка корпуса с защелкивающимся фиксатором
2. Ctonop
3. Крышка корпуса

Рис. 76

Нажмите стопор 2 вниз. Крышка 3 корпуса разблокирована.
Отведите крышку корпуса назад. Откройте ее вверх.
Извлеките разъем из держателя лампы.
Отстегните пружинный фиксатор и извлеките лампу.

Передние лампы

Поз.	Лампа	Тип
1	Дополнительный указатель поворота (в зеркале)	Светодиоды
2	Ближний свет	H755 W
3	Указатель поворота	PY21 W
4	Дальний свет	H755 W
5	Стояночный свет	W5 W
6	Противотуманная фара	H755 W

Задние лампы

Поз.	Лампа	Тип
7	Третий фонарь сигнала торможения	Светодиоды
8	Дополнительный указатель поворота на крыше	P21 W
9	Фонарь сигнала торможения, задний габаритный фонарь	$\mathrm{P} 21 / 5 \mathrm{~W}$
10	Указатель поворота	PY 21 W
11	Фонарь заднего хода	P 21 W
12	Задний противотуманный фонарь (на стороне во- дителя) стояночный фонарь	P 21 W
13	Фонарь освещения номера	C 5 W

Установите новую лампу так, чтобы выступ на цоколе лампы совпал с выемкой в патроне держателя лампы.
Застегните пружинный фиксатор. Установите штекер в держатель лампы,
Установите крышку корпуса 3 сверху в держатель. Нажмите на крышку корпуса до защелкивания стопора. Должен быть слышен характерный щелчок

Расположение ламп внутри правой блок-фары

4. Указатель поворота
5. Ближний свет
6. Противотуманный свет
7. Дальний свет

Указатель поворота

Поверните крышку корпуса с защелкивающимся фиксатором 1 влево. Извлеките ее.
Отведите лампу назад. Извлеките лампу (с поворотом влево) из держателя.
Установите новую лампу в держатель. Отведите лампу назад и установите ее, повернув вправо.
Установите держатель лампы в фонарь. Поверните его вправо до защелкивания.

Дополнительный указатель поворота

Фонарь находится по бокам автомобиля перед дверьми.

1. Фонарь указателя поворота

Рис. 78

Сдвиньте вперед корпус фонаря указателя поворота 1. Поверните его наружу.
Отведите лампу назад. Извлеките лампу (с поворотом влево).
Установите новую лампу в держатель. Отведите лампу назад и установите ее с поворотом вправо.

Установите переднюю часть корпуса фонаря указателя поворота 1. Отведите вовнутрь заднюю часть корпуса фонаря до защелкивания.

Замена задних ламп

Во избежание повреждения лакокрасочного покрытия демонтаж блока задних фонарей следует выполнять с особой осторожностью и предусмотрительностью.

Задние фонари

Для замены ламп следует демонтировать блок задних фонарей.

Отвертка находится в комплекте бортового инструмента в правом вещевом отсеке в багажном отделении.

- Выключите освещение.
- Откройте крышку или двери багажного отделения.
- Вывинтите три боковых крепежных винта 1.
- Поверните блок задних фонарей 2 наружу.
- Извлеките блок задних фонарей 2 из крепежных отверстий.
- Отсоедините электрический разъем.

Извлечение держателя ламп

1. Держатель ламп
2. Фиксаторы

Рис. 80

Нажмите фиксаторы 2 в направлении стрелки. Извлеките держатель ламп 1.

Расположение ламп

3. Сигнал торможения / габаритный свет

4. Указатель поворота
5. Задний ход
6. Противотуманный свет (только на стороне водителя)

Рис. 81

Замена ламп

Нажмите на лампу и извлеките ее (с поворотом влево).
Установите новую лампу (с поворотом вправо) в держатель.

Монтаж блока задних фонарей

Установите держатель лампы в блок задних фонарей до защелкивания.
Установите разъем в держатель ламп.
Установите блок задних фонарей сбоку в крепежные отверстия.
Поверните блок задних фонарей вовнутрь.
Установите три боковых крепежных винта 1.
Фонарь освещения номерного знака

1. Кожух фонаря
2. Лампочка

Рис. 82

Нажмите на фонарь, преодолевая усилие пружины. Извлеките его наружу.
Снимите кожух.
Извлеките лампу из держателя.
Установите новую лампу.
Наденьте кожух на фонарь.
Установите фонарь на место.
Нажмите на фонарь до защелкивания.

Дополнительный указатель поворота на крыше

Рис. 83

Выключите освещение.
Вывинтите три крепежных винта 1.
Извлеките стекло фонаря указателя поворота.
Извлеките лампу из держателя лампы.
Установите новую лампу.
Установите стекло фонаря указателя поворота и ввинтите три боковых крепежных винта 1.

Все необходимые для монтажа инструменты находятся в комплекте бортового инструмента в правом дополнительном вещевом отсеке в багажном отделении.

Демонтаж запасного колеса

Запасное колесо закреплено под задней частью автомобиля:
Откройте крышку/дверь багажного отделения.

1. Рычаг

2. Профиль

Pис. 84

Отверните с помощью рычага 1 крепежный болт в центре колеса.
Извлеките крепежный болт и профиль 2.
Извлеките колесо.

Демонтаж запасного колеса, закрепленного под задней частью автомобиля

Откройте крышку/дверь багажного отделения.
Удалите красную заглушку.

1. Отверстие

Рис. 85

Установите переходник через отверстие 1 в отверстие лебедки.
Наденьте ключ для колес на переходник Вращайте ключ против часовой стрелки до yпора.

Запасное колесо закрыто чехлом с четырьмя ручками.

Вытащите запасное колесо из-под автомобиля за одну из ручек 1.
Выдавите консоль держателя вниз из держателя обода колеса.

- Затем извлеките запасное колесо из держателя обода колеса.
Поднимание автомобиля
- Предотвратите скатывание автомобиля противооткатными упорами или т.п.

На ровной дороге

- Подложите упоры под диагонально расположенные колеса спереди и сзади.

На подъемах

- Подложите упоры под оба колеса другого моста.
- Извлеките комплект бортового инструмента и автомобильный домкрат из дополнительного вещевого отсека в багажном отделении.

Приемные точки для автомобильного домкрата находятся позади колесных ниш передних колес и перед колесными нишами задних колес.

1. Приемная точка
2. Автомобильный домкрат
3. Переходник
4. Храповой ключ

Рис. 89

- Извлеките автомобильный домкрат 2, переходник 3 и храповой ключ 4 из комплекта бортового инструмента в левом дополнительном багажном отсеке багажного отделения
- Установите автомобильный домкрат 2 на соответствующую приемную точку 1.
Автомобильный домкрат при подъеме автомобиля должен стоять непосредственно под приемной точкой даже при уклоне дороги.

Опасность получения травмы!!!
Тарелка автомобильного домкрата должна охватывать приемную точку для автомобильного домкрата.
В противном случае автомобиль может опрокинуться с домкрата. Вследствие этого люди могут получить травмы, а автомобиль - повреждения.

- Установите переходник с храповым ключом в автомобильный домкрат.
Должна быть видна надпись AUF (BBEPX).
- Вращайте храповой ключ в направлении надписи AUF (BBEPX) до отрыва колеса от грунта. При этом автомобильный домкрат может перемещаться на одну из боковых опорных поверхностей.
- Вывинтите болты крепления колеса.
- Не кладите болты крепления колес на песок или в грязь. Иначе возможно повреждение резьбы болтов или ступиц.
- Снимите колесо.

Опасность аварии!!!

Заменяйте болты крепления колес, имеющие повреждения или следы ржавчины.
Не смазывайте болты крепления колес маслом или консистентной смазкой.
Если в ступице колеса повреждена резьба, ни в коем случае не продолжайте движение. Свяжитесь со станцией ТО «МерседесБенц» или службой круглосуточного сервиса "Сервис 24 ч».
Поручайте проведение работ по техобслуживанию только квалифицированным специалистам.

- Очистите поверхности прилегания леса и ступицы колеса.
- Вверните центрирующий штифт.
- Насадите колесо на центрирующий штифт и прижмите его.

- Вверните болты крепления колеса и слегка затяните их.

Опасность аварии!!!

Не затягивайте полностью болты крепления колес при поднятом автомобиле, иначе автомобиль может опрокинуться.

- Вывинтите центрирующий штифт и вверните последний болт крепления колеса.

Опускание автомобиля

- Установите переходник с храповым ключом в автомобильный домкрат.
- Должна быть видна надлись AB (ВНИЗ).
- Опустите автомобиль.
- Отложите домкрат в сторону.

- Равномерно затяните все болты крепления колес в указанной последовательности с 1 по 5. Момент затяжки должен составлять $130 \mathrm{Hm} \pm 10 \mathrm{Hm}$.
- Равномерно затяните все болты қрегления колесв указанной последовательностис 1 по 5.
Момент затяжки должен составлять $\mathbf{1 3 0}$ Нм $\pm \mathbf{1 0} \mathrm{Hm}$.

Монтаж запасного колеса

в держатель запасного колеса в задней части автомобиля

- Установите колесо на консоль 2 на колесной нише 1.
- Установите крепежный болт и крепко затяните его с помощью рычага 3.

Монтаж запасного колеса в держатель под задней частью автомобиля

- Положите запасное колесо в держатель обода колеса.
- Нажмите на чехол колеса до его защелкивания на держателе обода колеса.
- Введите держатель на тросе сквозь отверстие в держателе обода колеса.
- Потяните слегка за трос так, чтобы оба выступа зафиксировались в держателе.
- Вращайте ключ по часовой стрелке.

Таким образом запасное колесо будет втягиваться под автомобиль.
Затяните с помощью воротка запасное колесо, минимальный момент затяжки -60 Hm .

Электрические предохранители

Основной блок предохранителей

Внимание: замену предохранителей можно производить только после устранения причины их перегорания.
Основной блок предохранителей размещен в моторном отсеке справа.
Для того чтобы открыть крышку, отогните фиксаторы в направлениях, указанных стрелками.

> 1. Язычок
> 2. Крышка

Рис. 93

Рис. 95

Блок основных предохранителей

Номер	Потребитель	Номинал	23	Блок управления надувной подушки безопасности	10 A
1	Передний стеклоочиститель	30 A			
2	Звуковой сигнал	15A	24	Не используется	
3	Выключатель стоп сигнала	5 A	25	Блок управления прицепом	5 A
4	Отопитель	7,5A	26	Разделительное реле	5 A
5	Блок диагностики		27	Цепь. 15	5 A
6	Автомобильные компоненты	5 A	28	Прибор управления привода	10 A
7	Задний стеклоочиститель	30 A	29	Не используется	
8	Цепь. 87 (1)	10 A	30	Не используется	
9	Цепь. 87 (2)	15A	31	Звуковой сигнал системы EDW	10 A
10	Hent. 87 (3)	10 A	32	Мобильный телефон соединение	5 A
11	Цепь. 30 Z электродвигатель	7,5A	33	VICS	
12	Обогрев заднего стекла	30 A		Надувная подушка безопасности, система AKSE	10 A
13	Замок-выключатель зажигания и противоугонная система	7,5A	34	Цепь. 15	5 A
14	Тормозная система	7,5A	35	Блок управления и привода сдвиж- ной крыши	7,5A
15	Регулятор угла наклона светового пучка фар	5 A	36	Электрическое регулирование положения сидений 10 A	
16	Стартер	25 A	37	Подсветка зеркала для пассажира	7,5 A
17	Топливный насос	15 A		Внутренняя часть кузова за пере-	75 A
18	Прикуриватель	15 A	38	дними сиденьями	7,5 A
19	Радио	5 A	39	Не используется	
20	Система зажигания (автомобиль с бензиновым двигателем)	15 A	40	Блок управления системой CDI	10 A
			41	Блок управления системой CDI	10 A
21	Питание системы управления АКПП	7,5A	F1	Цепь 30 бортовой сети, генератор	150 A
22	Taxorpaф		F4	Вентилятор кондиционера	60 A
		7,5A	F5	Вторичный вентилятор	40 A

Блок предохранителей F34

Номер	Потребитель	Номинал
21	Центральный переключатель света и потолочная панель управления	5A
22	Потребители задней части салона	7,5 A
23	Плафон освещения	10 A
24	Привод сдвижной крыши (люка)	7,5A/25A
25	Привод панорамной сдвижной крыши	25 A
26	Радиоприемник	5 A
27	Кондиционер, Потребители задней части салона	7,5 A
28	Потребители задней части салона	15A
29	Мобильный телефон/система LINGUATRONIC	7,5 A
30	Подогрев сидений	30 A
31	Тахограф	5 A
32	Не используется	
33	Блок диагностики	10 A
34	Не используется	
35	Система Tempmatik/кондиционер	5A
36	Омывательфар	30 A
37	Звуковой сигнал EDW	10 A
38	Запирание рулевых колонок	20 A
39	Вентилятор	40 A
40	Блок управления ABS	25 A
41	Блок управления ABS	40 A
42	Радио/система COMAND	15 A

Блок предохранителей F 35

21	Питание 12 В потребителей левой средней стойки салона	15A
22	Питание 12 В потребителей левой средней стойки салона	15A
23	Электрический разъем прицепа	30 A
24	Опознавательный прибор прицепа	25 A
25	Регулирование положения сиденья водителя	30 A
26	Регулирование положения сиденья пассажира	30 A
27	Электрический привод левой сдвижной двери	30 A
28	Электрический привод правой сдвижной двери	30 A
29	Вентилятор	30 A
30	Питание пневмоподвески	40 A
31	Система PARKTRONIC	10A
32	Система контроля давления в шинах	5 A
33	Не используется	
34	Мобильный телефон/VICS+ телевизионный усилитель	5A
35	Прибор управления стояночного обогревателя	20 A
36	Не используется	
37	Кондиционер	5 A
38	Не используется	
39	Не используется	
40	Штепсельная розетка 12 В	15 A
41	Блок управления дополнительными указателями поворотов на крыше	10 A

Блок предохранителей в сиденье водителя

Для того, чтобы открыть крышку отсека под виденьем водителя, следует повернуть зам мок (1).

1. Поворотный фиксатор
2. Крышка

Рис. 98

Рис. 99

Блок предохранителей F7

Номер	Потребитель	Номинал
1	Панель управления на левой двери	25 A
2	Панель управления на правой двери	25 A
3	Блок управления PSM	25 A
4	Блок управления PSM	25 A
5	Штепсельная розетка 12 В в отсеке по пассажирским сиденьем	15 A
6	Не используется	
7	Таймер и подсветка стояночного обогревателя	$7,5 \mathrm{~A}$
8	Стояночный обогреватель	25 A
9	Стояночный обогреватель	25 A
F6	SАМ-SRB	80 A

Передняя буксировочная проушина

Приемная точка для передней буксировочной проушины находится по направлению движения автомобиля с правой стороны за заглушкой бампера.
Буксировочная проушина находится в комплекте бортового инструмента.

Монтаж буксировочной проушины

Для доступа к приемной точке буксировочной проушины вывинтите заглушку 1 и оставьте ее висеть на ленте.
Извлеките буксировочную проушину из комплекта бортового инструмента
Ввинтите буксировочную проушину до упора. Установите рукоятку ключа для колес в буксировочную проушину и туго затяните ее.
Прикрепляйте буксировочный трос или штангу только к буксировочной проушине, иначе автомобиль может быть поврежден.

Задняя буксировочная проушина

Задняя буксировочная проушина находится с правой стороны по направлению движения автомобиля под облицовкой бампера.
Задняя буксировочная проушина отсутствует, если ваш автомобиль на заводе был оборудован тягово-сцепным устройством с обращенной вверх несъемной шаровой головкой.
Используйте в этом случае тягово-сцепное устройство как буксировочную проушину.
Задняя буксировочная проушина есть у автомобилей, оборудованных тягово-сцепным устройством со съемной шаровой головкой.

Номер шасси

1. Заводская табличка с номером Рис. 103 шасси

Заводская табличка с номером шасси находится в проеме двери на стороне переднего пассажира.

Номер двигателя

Номер двигателя выбит на двигателе.

Монтажные размеры

1. Точки крепления

2. Расстояние до полотна дороги (350 mm , автомобиль загружен)

Рис. 104

Характеристика	Модификация автомобиля (торговое обозначение)			
	Vito 109 CDI	Vito 111 CDI	Vito 115 CDI	Vito 119
Номинальная мощность	65 kBT	80 kBT	110 kBT	140 kBT
При частоте вращения	3800 об/мин	3800 об/мин	3800 об/Мин	5500 об/мин
Номинальный крутящий момент	220 Hm	270 Hm	330 Hm	270 Hm
При частоте вращения	1400-2500 об/мин	1600-2500 об/мин	1800-2400 об/мин	2750-4500 об/Мин
Число цилиндров	4	4	4	6
Число клапанов на цилиндр	4	4	4	3
Общий рабочий объем (cm^{3})	$2148 \mathrm{~cm}^{3}$	$2148 \mathrm{~cm}^{3}$	$2148 \mathrm{~cm}^{3}$	$3199 \mathrm{~cm}^{3}$
Максимальная частота вращения	4600 об/мин	4600 об/Мин	4600 об/Мин	6000 об/мин

Максимальная скорость в км/ч	Vito 109 CDI	Vito 111 CDI	Vito 115 CDI	Vito 119
Механическая коробка передач, 6-ступенчатая,	141	152	174	
Автоматическая коробка передач, 5-ступенчатая		155	173	180
Время разгона от 0 до 100 км/4	Vito 109 CDI	Vito 111 CDI	Vito 115 CDI	Vito 119
Механическая коробка передач (с)	22,8	22,1	17,1	
Автоматическая коробка передач (с)	21,3	15,2		

Шины и колеса

Применяйте только шины и колеса, специально разработанные для вашего автомобиля и проверенные и допущенные «Мерседес-Бенц». Другие шины и колеса могут привести к отрицательным изменениям:

- ухудшению динамических свойств;
- более громкому шуму;
- повышенному расходу топлива.

Шины и колеса, не допущенные со стороны "ДаймлерКрайслер", могут оказаться слишком большими или деформироваться под нагрузкой. Вследствие этого они могут задевать за кузов и его элементы и повредить шины или автомобиль.

Дополнительную информацию по шинам и колесам вы можете получить на любой станции ТО «Мерседес-Бенц».

Индекс скорости для шин

Индекс скорости является частью обозначения шины. Он указывает, для какого диапазона скорости допущена шина.

Обозначение	Допустимая скорость
R	до $170 \mathrm{~km} / \mathrm{4}$
T	до $190 \mathrm{~km} / \mathrm{4}$
H	до $210 \mathrm{~km} / \mathrm{4}$

Размеры шин и колесных дисков

Шины	
Шины с летним рисунком протектора	195/65 R16C 100/98T
	205/65 R16 C 103/101 T (99 H)
	225/60 R16 C101/99 H
	225/55 R17 C 104/102 H
Шины с зимним рисунком протектора	205/65R16C 103/ 101 T
Диски	
Запасное колесо	$6 \mathrm{~J} \times 16 \mathrm{ET} 546,5 \mathrm{~J} \times 16 \mathrm{ET} 60$
Колеса из стали	$6 \mathrm{~J} \times 16$ ET $546,5 \mathrm{~J} \times 16$ ET 60
Колеса из легких сплавов	$6.5 \mathrm{~J} \times 16 \mathrm{ET} 607 \mathrm{~J} \times 17 \mathrm{ET} 56$

Давление воздуха в шинах

Шины	Давление воздуха в шинах	
	Передний мост	Задний мост/запасное колесо
	Холодные шины*	Холодные шины*
195/65R16C	3,3 бар	3,5 бар
$205 / 65 \mathrm{R} 16 \mathrm{C}$	3,3 бар	3,5 бар
$225 / 60 \mathrm{R} 16 \mathrm{C}$	3,3 бар	3,5 бар
$225 / 55 \mathrm{R} 17 \mathrm{C}$	3,3 бар	3,5 бар

[^1]
Технические характеристики автомобиля

Габаритные размеры автомобиля

Характеристика	Вариант исполнения (комплектации)	Размеры в мм		
		Короткий вариант кузова	Cредний вариант кузова	Длинный вариант кузова
Длина автомобиля		4748	4993	5223
Ширина автомобиля	Сдвижная дверь справа	1901	1901	1901
	Сдвижная дверь слева и справа	1906	1906	1906
Высота автомобили	1902	1002	1900	
	Нормальная крыша	-	2083	2077
	Средняя крыша	-	2328	-
	Высокая крыша	3200	3200	3430

Масса автомобиля (механическая коробка передач)

Масса снаряженного автомобиля, включая массу водителя (75 kr) и все используемые жидкости (топливный бак заполнен на 90%).
Элементы специальной комплектации повышают массу снаряженного автомобиля и уменьшают полезную нагрузку.

Характеристика		Масса в кт	
	Короткий вариант кузова	Средний вариант кузова	Длинный вариант кузова
Mасса снаряженного автомобиля согласно директиве 92/91/EWG* Фургон, начиная с Комби, начиная с			
Полная нормативная масса*	1820	1845	1870
Нормативная нагрузка на передний мост*	1900	1925	1950
Нормативная нагрузка на задний мост*	$2770-2940$	$2770-2940$	$2770-2940$

* Значение (кг) для двигателя ОМ 646 DE 22 LA

Масса перевозимого груза (механическая коробка передач)

Характеристика	Значения нагрузки в кг		
	Короткий вариант кузова	Средний вариант кузова	Длинный вариант кузова
Нормативная нагрузка для прицепа с тормозной системой	2000	2000	2000
Нормативная нагрузка для прицепа без тормозной системы	750	750	750
Максимальная опорная нагрузка	100	100	- 100
Максимальная загрузка Фургон Комби	$\begin{aligned} & 950-1120 \\ & 870-1040 \end{aligned}$	$\begin{aligned} & 925-1005 \\ & 845-1015 \end{aligned}$	$\begin{gathered} 900-1070 \\ 820-990 \end{gathered}$
Максимальная нагрузка на крышу	150	150	150
Максимальная нагрузка ІІ крышку/дверь багажного отделения	95	95	95

Эксплуатационные материалы и заправочные объемы

Эксплуатационными материалами являются топливо, смазочные материалы, например, моторное масло, трансмиссионное масло, консистентные смазки, охлаждающая жидкость и тормозная жидкость.
Применяйте только испытанные и допущенные «Мерседес-Бенц" эксплуатационные материалы, так как они:

- являются составной частью права на гарантию;
- согласованы с конструкцией вашего автомобиля.

Дополнительную информацию вы можете получить на вашей станции ТО «Мерседес-Бенц».

Топливо

Емкость топливного бака

Общий объем	около 75 л
Включая минимальный резерв топлива	около 9 л

Сорта топлива для бензиновых двигателей

В странах, в которых используется дизельное топливо с содержанием серы свыше 0,5 весовых процентов, рекомендуем производить смену моторного масла каждые 7500 км.

К повышенному износу и повреждению двигателя может привести применение:

- дизельного топлива, не отвечающего требованиям европейской нормы EN 590;
- судового топлива (Marine Diesel Fuel);
- котельного топлива;
- биодизельного топлива (метилэфир на основе растительного масла (PME).

Влияние низкой температуры наружного воздуха

Во избежание перебоев в работе двигателя в зимние месяцы предлагается дизельное топливо с улучшенной текучестью при низкой температуре. Зимние сорта топлива могут без помех применяться до температуры приблизительно $-20^{\circ} \mathrm{C}$.
Для улучшения текучести вы можете смешивать дизельное топливо с керосином и/или средством для улучшения текучести. Соотношение смеси зависит от вида дизельного топлива и от температуры наружного воздуха.
По возможности добавляйте к дизельному топливу как можно меньше керосина или средства для улучшения текучести.

Внимание: не смешивайте дизельное топливо с бензином. В противном случае будет повреждена топливная система.

- Примешивайте к дизельному топливу не более 50% керосина или средства для улучшения текучести.
- Смешивайте дизельное топливо с керосином только в допущенной для топлива емкости, но не в топливном баке автомобиля.
- Сначала залейте в емкость керосин, а затем дизельное топливо.

Модификация дизельного топлива в зависимости от температуры наружного воздуха

Расход топлива

При приведенных ниже условиях автомобиль расходует больше топлива, чем обычно:

- при крайне низкой температуре;
- при движении по городу;
- на коротких дистанциях;
- при движении с прицепом;
- в гористой местности.

Значения расхода топлива были определены согласно директиве 1999/100/EG (директива по эмиссии двуокиси углерода и

расходу топлива автомобилями) при следующих условиях испытания:

- внутригородской цикл имитирует обычное городское движение с частыми процессами трогания с места и остановками автомобиля;
- внегородской цикл имитирует обычные условия движения с ускорениями на всех передачах от 0 до $120 \mathrm{~km} / \mathrm{\psi}$;
- при расчете среднего расхода внутригородской цикл принимается приблизительно за 37\%, внегородской цикл - приблизительно за 63\%.

Значения расхода топлива

условия движения	Значения расхода в л/100 км					
	Vito 109 CDI	Vito 111 CDI	Vito 115 CDI	Vito 119	Vito 122	
Механическая коробка передач						
Город	12,9	11,9	11,2	-	-	
Трасса	7,7	7,2	7,1	-	-	
Средний	9,6	8,9	8,6	12,1	12,1	
Эмиссия CO_{2} (г/км)	254	235	227	-	-	
Автоматическая коробка передач						
Город	-	11,6	11,4	-	-	
Трасса	-	7,3	7,2	-	-	
Средний	-	8,9	8,8	-	-	
Эмиссия CO_{2} (г/км)	-	235	232	-	-	

Действительные значения расхода топлива у вашего автомобиля могут отклоняться от указанных значений в зависимости от:

- стиля вождения;
- дорожных, условий и условий движения транспорта;
- воздействия окружающей среды;
- состояния автомобиля.

Не применяйте специальные присадки, так как они могут привести к повышенному износу и повреждению двигателя.

Моторное масло

Нижеприведенные значения указывают соответственно общий заправочный объем для двигателя

условия замены масла	Объем для замены, л					
	Vito 109 CDI	Vito 111 CDI	Vito 115 CDI	Vito 119	Vito 122	
Двигатель с масляным фильтром	8,5	8,5	8,5	10	10	
Двигатель без масляного фильтра	8,3	8,3	8,3	9,5	9,5	

Не применяйте специальные присадки, так как они могут привести к повышенному износу и повреждению двигателя.

Tемпература наружного воздуха	Состав смеси	
$-15^{\circ} \mathrm{C}$ до $-20^{\circ} \mathrm{C}$	Летнее ДТ 80%	Керосин 20%.
$-23^{\circ} \mathrm{C}$ до $-30^{\circ} \mathrm{C}$	Летнее ДТ 50%	Керосин 50%
$-25^{\circ} \mathrm{C}$ до $-30^{\circ} \mathrm{C}$	Зимнее ДТ 80%	Керосин 20%
$-30^{\circ} \mathrm{C}$ до $-35^{\circ} \mathrm{C}$	Зимнее ДТ 50%	Керосин 50%

Вязкость моторного масла

Выбирайте предписанные по SAE классы (вязкость) моторного масла в зависимости от времени года.
Нижеследующая таблица показывает вам, при какой средней температуре воздуха какой предписанный по SAE класс вы должны применять.

Система и комплектация	Объем, л				
	$\begin{aligned} & \text { Vito } \\ & 109 \\ & \text { CDI } \end{aligned}$	Vito 111 CDI	Vito 115 CDI	$\begin{aligned} & \text { Vito } \\ & 119 \end{aligned}$	$\begin{aligned} & \text { Vito } \\ & 122 \end{aligned}$
Охлаждение					
Охлаждающая жидкость (базовая комплектация)			9		
Охлаждающая жидкость с независимым отопителем			11		
Отопление - кондиционер					
Теплообменник в передней части салона	0,43				
Теплообменник в задней части салона	0,3				
Хладагент кондиционера в передней части салона (без кондиционера в задней части салона)	Около 0,5-0,6				
Хладагент кондиционера в передней части салона (с кондиционером в задней части салона)	Около 0,8				

Технические характеристики агрегатов

Двигатели семейства ОМ 646

Динамические характеристики двигателей

Характеристика	646.982 With code MC2	646.982 With code MC3	646.983	646.984	646.985	646.986	646.989
Тип двигателя	OM 646 DE 22 LA						
Мощность, кВт/л.с.	80/109	110/136	65/88	65/88	80/109	110/150	95/129
Частота вращения, при которой развивается максимальная мощность, об/мин	3800	3800	3800	3800	3800	3800	3800
Максимальный крутящий момент, Нм	270	330	220	220	280	330	330
Частота вращения, при которой развивается максимальный крутящий момент мощность, об/мин	1600-2500	1800-2400	1400-2500	1600-2600	1600-2400	1200-2400	1200-2400

Конструктивные особенности и характеристики двигателей

Характеристика	Содержание характеристики
	Все модификации двигателя Ом 646
Диаметр цилиндра, мм	88,0
Ход поршня, мм	88,3
Рабочий объем, см	2148
Степень сжатия геометрическая	$18: 1$
Порядок воспламенения в цилиндрах	$1-3-4-2$
Количество и расположение цилиндров	4, рядный
Количество клапанов на один цилиндр Впускных Выпускных	2
Принцип действия	2
Система подачи воздуха	
Система впрыска	4-тактный дизельный двигатель с непосредственным впрыском топлива

1. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Межсервисные интервалы технического обслуживания

Система ASSYST определяет оптимальную дату проведения техобслуживания и выдает соответствующее сообщение на многофункциональном дисплее. Отображается остаточный пробег в километрах или время

до очередного ТО в сутках, в зависимости от того, какой интервал - пути или времени - будет преодолен раньше.

Дополнительные или зависящие от временного интервала работы по ТО не отобража-

ются на многофункциональном дисплее. Они должны выполняться в соответствующие сроки дополнительно или отдельно. По окончании работ по ТО необходимо сбросить показания сервисного компьютера.

Указания по техобслуживанию

Объем работ по ТО следует выбирать из соответствующего действующего сервисного листа, а содержание отдельных рабочих операций ТО - из «Руководства по техобслуживанию".
Дополнительные работы по ТО и зависящие от времени работы по ТО указываются в конце сервисного листа. Они должны согласовываться с клиентом и отмечаться крестиком в заголовке на первой странице:

- доп. работы при каждой 3-й замене масла в двигателе,
- доп. работы при каждом техобслуживании, - доп. работы при каждом 2-м техобслуживании,
- доп. работы при каждом 6-м техобслуживании,
- работы по ТО каждые 6 лет,
- работы по ТО каждые 4 года,
- работы по ТО каждые 10 лет,
- работы по то каждые 15 лет или каждые 250000 kм.
Выполнение отдельных рабочих операций по ТО следует отмечать в сервисном листе крестиком в полях перед названиями работ. В полях после названий работ следует отмечать крестиком наличие неисправностей в пределах данного объема работ при приемке автомобиля. Выполняющий работы механик подтверждает это своей подписью в заголовке сервисного листа.

Работы по техническому обслуживанию

Проверка тормозной системы на испытательном стенде

1. Измерить значения замедления для рабочей тормозной системы Внимание: проверку проводить при работающем двигателе для обеспечения максимального вакуумного усиления.

Внимание: допустимое отклонение от наибольшего значения в каждом случае должно составлять не более 25%. Тормозное действие должно проявляться не позднее чем їидліе четверти общего хода педали.

Внимание: при наличии отклонений от указанных в описании работ контрольных значений необходимо выяснить и устранить причину (по отдельному наряду-заказу).
2. Измерить значения замедления для стояночной тормозной системы.
Занести значения замедления для рабочей и стояночной тормозной системы в сервисный лист.

Функциональная проверка систем

Проверка работоспособности звукового сигнала и контрольных ламп

Проверка

Для проверки указанных систем нужно выполнить следующие действия.

1. Включить зажигание.
2. Затянуть стояночный тормоз.
3. Проверить контрольные лампы.

Звуковой сигнал, контрольные лампы

3.1. При включении зажигания все контрольные лампы должны включиться.
Лампы, которые перечислены ниже, должны погаснуть через несколько секунд:
индикатор выхода из строя ламп освещения (1), световой индикатор незакрытых дверей (2), световой индикатор дальнего света (3), световой индикатор выхода из строя вентилятора (E-Box fan) (4), световой индикатор электронной системы поддержания уровня кузова (5), световой индикатор непристегнутых ремней безопасности (6), световой индикатор износа тормозных колодок (8), LIM (9), световой индикатор включения свечей накаливания (10), световой индикатор системы регулирования ускорения (ASR) (11), световой индикатор системы регулирования ускорения/электропневматической системы активного регулирования мощности (ASR/EPS) (12), световой индикатор антиблокировочной системы тормозов (ABS) (13), световой индикатор системы диагностики двигателя (14), световой индикатор контроля уровня масла в двигателе (15), световой индикатор дополнительной системы безопасности (16), световой индикатор температуры ОЖ (17), световой индикатор уровня ОЖ (18), световой индикатор загрязнения топливного фильтра (19), световой индикатор наличия воды в топливном фильтре (20), световой индикатор загрязнения воздушного фильтра (21), световой индикатор уровня жидкости в омывателе стекол (22), световой индикатор уровня тормозной жидкости (23), световой индикатор резерва топлива (25).

Примечание: длительность свечения индикатора (10) зависит от температуры ОЖ.
3.2. Запустить двигатель

Внимание: после запуска двигателя индикатор зарядки (7) и все остальные индикаторы, которые не погасли, должны погаснуть, за исключением светового индикатора стояночного тормоза (24),
3.3. Проверить работу светового индикатора указателя поворотов.

4. Проверить звуковой сигнал.
5. Проверить плафон освещения салона.

Фары, наружные световые приборы

Проверить наружное освещение, поочередно включив габаритные огни, ближний свет фар, дальний свет фар, противотуманные фары, противотуманный задний фонарь, указатели поворотов и их повторители, аварийную сигнализацию, стоп-сигналы и фонари заднего хода.

Стеклоочиститель, передний (задний) стеклоомыватель

Проверить работу следующих устройств:

- переднего стеклоочистителя на всех скоростях;
- заднего стеклоочистителя;
- переднего стеклоомывателя;
- заднего стеклоомывателя;
- омывателя фар.

Проверить состояние щеток стеклоочистителя.

Моторный отсек

Замена масла в двигателе и масляного фильтра. Проверка, корректировка уровня жидкости

1. Извлеките масляный щуп и произведите откачивание масла при помощи специального вакуумного устройства (масло должно быть прогрето до рабочей температуры).
При отсутствии откачивающего устройства слейте масло через сливное отверстие поддона масляного картера.
2. После слива масла закрутите и затяните моментом $30 \mathrm{Hм}$ пробку сливного отверстия (резьба М14).
3. Залейте масло (9 л) через заливную горловину (2).
Примечание: для того чтобы при заливке не превысить уровень масла в лвигателе, залейте пориию масла на 0,5-1 л меньше указанного количества. При проведении проверки уровня масла его можно долить.

Внимание: превышение уровня масла в двигателе недопустимо. Если это произошло, то излишек масла следует удалить.

Проверка

4. Запустите двигатель.

Внимание: при первом запуске двигателя не повышайте его частоту вращения до того, пока световой индикатор аварийно низкого давления масла не погаснет.
5. После прогрева двигателя убедитесь в отсутствии подтеканий масла через сливную пробку.
6. Проверьте уровень масла. Это следует делать через 2 минуты после остановки полностью прогретого двигателя на ровной площадке.
При утечке жидкости нужно выявить и устранить ее причину.

1. Масляный щуп
2. Масло заливная горловина

3. Пробка сливного отверстия

VN 1.002

Система охлаждения двигателя. Проверка, корректировка концентрации антифриза с антикоррозионными присадками

Для проверки и корректировки уровня и состава ОЖ следует выполнить следующие действия.

1. Отвернуть крышку (2) (рис. VN 1.003).
2. Проверить уровень охлаждающей жидкости.
Внимание: уровень охлаждающей жидкости следует проверять и корректировать только при температуре охлаждающей жидкости ниже $50^{\circ} \mathrm{C}$. Система охлаждения заполнена правильно, если уровень ОЖ находится

между метками MAX и MIN.
3. Проверить концентрацию антифриза.

Если концентрация антифриза понижена, то ее следует откорректировать.
4. Откорректировать уровень охлаждающей жидкости
Внимание: охлаждающую жидкость следует использовать только в правильных пропорциях компонентов (см. таблицу).
5. Установить крышку (2).

Заправочные объемы ОЖ

	Без кода комплектации H13 или кода HZ7	Скодом комплектации H13 или кодом HZ7
Общий заправочный объем	$8,6 л$	10,5 л
Заправочный объем антифриза с антикор- розионными присадками до $-37^{\circ} \mathrm{C}$	$4,3 л$	5,3 л
Антифриз концентрат до $-45^{\circ} \mathrm{C}$	4,7 л	5,8 л

Гидравлический привод тормозов

1 Провериін уровенн кидкости в раснирительном бачке.
Внимание: если уровень тормозной жидкости находится между метками MAX и MIN, то расширительный бачок заполнен правильно.
Внимание: доливать тормозную жидкость следует только тогда, когда уровень тормозной жидкости опустится ниже отметки MIN.
Внимание: если уровень тормозной жидкости опустился ниже отметки MIN, то нужно проверить тормозную систему и систему привода сцепления на герметичность:
при этом проверяются все резервуары, приборы, амортизаторы, крышки, манжеты, колпачки.
2. Откорректировать уровень жидкости (тормозная жидкость (DOT 4 plus).

Гидроусилитель рулевого
управления (ГУР)

1. Снять запорную крышку (1) расширительного бачка.
2. Проверить уровень масла. Для этого следует протереть масляный щуп тряпкой, установить крышку со щупом на место, заєернуть до конца, повторно открутить и определить уровень масла.
Питающий бачок заполнен правильно, если масло при температуре около $20^{\circ} \mathrm{C}$ располагается между отметками MIN и MAX.
3. Затянуть запорную крышку на питающем бачке.

Стеклоомыватель

Заполнить заправочный бачок (1) средством для омывания стекол.

Средство для омывания стекол представляет собой смесь воды и концентрата.
Соотношение компонентов при смешивании указано на упаковке.
Следует использовать только допущенный производителем концентрат.

Двигатель

Замена фильтрующего элемента воздушного фильтра

1. Снимите корпус воздушного фильтра.
1.1. Снимите входной воздуховод (1) впускного коллектора, предварительно ослабив хомут.
1.2. Снимите выносную маслозаливную горловину (2). Для этого отожмите фиксирующую пружину назад и извлеките вверх устройство (2).
1.3. Извлеките корпус (3) воздушного фильтра из креплений (4), расположенных на передней панели, потянув его вверх.
1.4. Извлеките корпус (3) воздушного фильтра из задних креплений, потянув его вперед.
1.5. Отсоедините электрический разъем (5).
1.6. Снимите входной воздуховод воздушного фильтра.
1.7. Снимите корпус воздушного фильтра (3).
1.8. Установку производите в обратной последовательности.
2. Отсоедините верхнюю часть корпуса воздушного фильтра (6), рассоединив фиксаторы (8).
3. Извлеките фильтрующий элемент (7).
4. Установку производите в обратной последовательности.

Проверка поликлинового ремня на отсутствие износа и повреждений

1. Вращайте двигатель при помощи стартера. Для этого нужно выполнить следующие действия.
1.1. Выключить зажигание.
1.2. Отсоединить электрический разъем (4) клапана регулирования давления (3).
1.3. Подключить устройство для проверки компрессии (1). Для этого, в свою очередь,

нужно выполнить следующие действия.
1.3.1. Снять крышку блока реле и предохранителей.
1.3.2. Снять реле стартера (5).
1.3.3. Подключить клемму провода устройства для проверки компрессии к гнезду (6).
1.3.4. Подключить другую клемму устройства к клемме « «».
1.3.5. Отключение устройства производите в обратной последовательности.
1.4. Вращайте двигатель стартером, нажимая на кнопку (2) на устройстве для проверки компрессии (1).
1.5. Отсоедините устройство (1).

2. Проверьте поликлиновой ремень на наличие износа и повреждений.

3. При наличии описанных выше повреждений замените ремень.

Замена ремня

Снятие

3.1. Снимите корпус воздушного фильтра.
3.2. Ослабьте натяжение ремня. Для этого следует выполнить следующие действия.
3.2.1. Поверните натяжное устройство (1) против часовой стрелки, преодолевая сопротивление натяжной пружины.
3.2.2. Установите фиксирующий палец (2) в отверстие для фиксации подвижной части (1) натяжного устройства, относительно неподвижной части (3) в данном положении ролика (4).

3.3. Снимите поликлиновой ремень.

Внимание: при поворачивании натяжного устройства не прилагайте к ключу чрезмерных усилий с тем, чтобы не повредить переднюю крышку блока цилиндров.

Установка

3.4. Установите поликлиновой ремень, начиная с натяжного ролика.

Двигатель 646: ремень привода вспомогательных механизмов с компрессором кондиционера

1. Натяжной ролик

2. Шкив коленчатого вала
3. Шкив циркуляционного насоса системы

охлаждения (далее - насоса ОЖ)
4. Шкив генератора
5. Направляющий ролик
6. Шкив компрессора кондиционера
7. Шкив насоса ГУР

VN 1.010

Двигатель 646: ремень привода
вспомогательных механизмов без компрессора кондиционера

1. Натяжной ролик
2. Шкив коленчатого вала
3. Шкив циркуляционного насоса системы

охлаждения (далее - насоса ОЖ)
4. Шкив генератора
5. Направляющий ролик
7. Шкив насоса ГУР

VN 1.011
3.5. Приведите в действие пружинное натяжное устройство. Для этого следует выполнить следующие действия.
3.5.1. Слегка поверните основание (1) натяжного ролика (4) против часовой стрелки для того, чтобы освободить фиксирующий палец (2).
3.5.2. Извлеките фиксирующий палец (2).
3.5.3. Плавно, удерживая натяжное устройство от резкого движения, поверните его по часовой стрелке, пока его не остановит натянувшийся ремень.

VN 1.012

Замена топливного фильтра

1. Снимите корпус воздушного фильтра.
2. Отсоедините топливопроводы (2) от топливного фильтра (1).
3. Отсоедините электрический разъем (3) датчика уровня воды в фильтре (6) (только для автомобилей, оборудованных сепаратором воды, - код комплектации KL5).
4. Отсоедините сливную трубку (4) от фильтра (1) (только для автомобилей, оборудованных сепаратором воды, - код комплектации KL5).
5. Ослабьте винты (5).
6. Снимите топливный фильтр (1).
7. Снимите датчик (6) уровня воды в топливном фильтре (только для автомобилей, оборудованных сепаратором воды, - код комплектации KL5).

Внимание: при установке фильтра обратите внимание на правильность его посадки в креплениях.
8. Установку производите в обратной последовательности. Момент затяжки винтов крепления: 8 Hm .
9. Включите зажигание, запустите двигатель и убедитесь в отсутствии утечек топлива при работающем двигателе.

Замена фильтрующего элемента пылевого фильтра системы отопления-вентиляции или комбинированного фильтра климатической системы

С пылевым фильтром (код HF2)

1. Отстегните крепления и снимите крышку (1).
2. Снимите кронштейн (2).
3. Осторожно извлеките рамку фильтра (3).

4. Извлеките из рамки использованный фильтрующий элемент (4) и установите новый.
5. Установку производите в обратной последовательности.

Колеса, тормозные механизмы

Давление воздуха в шинах: корректировка

Давление воздуха в шинах смотрите на откидной крышке заправочного люка.

Проверка толщины

 фрикционных накладок тормозных колодок и состояние тормозных дисковПо результатам осмотра замените тормозные колодки и тормозные диски.

1. Проверка толщины накладок тормозных колодок тормозов.

Примечание: толщину наружной колодки переднего тормоза можно проверить через вентиляционные отверстия стального колесного диска. Толщину внутренней накладки можно проверить при доступе к автомобилю снизу.

Предельное значение износа тормозных колодок: $3,5 \mathrm{mм}$.

Если при первичной проверке толщина колодки окажется недостаточной, следует проверить толщину всех колодок со снятием колес.

1. Снятие, проверка и установка

 передних тормозных колодок1.1. Открутите крышку (1) расширительного бачка (2).
Перед закручиванием крышки проверьте уровень тормозной жидкости. После окончательного сведения колодок уровень жидкости может понизиться.
1.2. Снимите передние колеса.
1.3. Отсоедините электрический разъем (3) от плавающей скобы (6).
Перед установкой проверьте правильность укладки провода.
1.4.Открутите нижний винт (2) крепления плавающей скобы (6) и отверните скобу вверх.
Примечание: при установке плавающей скобы используйте новый винт крепления.
1.5. Снимите тормозные колодки (10) с кронштейна (7).

1. Крышка

расширительного бачка
2. Расширительный бачок тормозной системы
3. Электрический разъем
4. Винт крепления плавающей скобы переднего суппорта
5. Тормозная трубка
6. Плавающая скоба суппорта
7. Кронштейн суппорта
8. Датчики износа колодок

10. Тормозные колодки
11. Тормозной диск
12. Фиксирующий винт тормозного диска
 13. Винты крепления кронштейна

VN 1.016

При установке колодок с датчиками износа устанавливайте их так, чтобы датчики были обращены наружу. Перед установкой нанесите на боковые направляющие поверхности колодок тонкий слой специальной пасты для тормозных колодок.

Проверка тормозных колодок и тормозных дисков

1.6. Проверьте толщину тормозных колодок и визуально проверьте состояние тормозных дисков.
Предельное значение износа тормозных колодок: 3,5 мм.
1.7. Осмотрите тормозные шланги на предмет повреждений (трещины, расслоения, подтекание жидкости). При наличии дефектов тормозные шланги следует заменить.
1.8. Вдавите внутрь поршень тормозного

цилиндра, если при вдавливании поршень заедает, замените плавающую скобу в сборе. Для снятия скобы достаточно открутить нижний и верхний винты крепления скобы к кронштейну.
1.9. Произведите очистку от грязи и окалины поверхности контакта плавающей скобы с колодками.
1.10. Установку производите в обратной последовательности. Момент затяжки винта крепления плавающей скобы k кронштейну: 30 Hm .

Снятие, проверка и установка задних тормозных колодок

1.11. Открутите крышку (1) расширительного бачка (2).
1.12. Снимите задние колеса.
1.13. Отсоедините разъем (3) датчика износа колодок.
1.14. Открутите винты (4) крепления плавающей скобы (6) суппорта, снимите плавающую скобу и отведите ее в сторону.
1.15. Снимите тормозные колодки (10) с кронштейна суппорта (7).

При установке колодок с датчиками износа устанавливайте их так, чтобы датчики были обращены наружу. Перед установкой нанесите на боковые направляющие поверхности колодок тонкий слой специальной пасты для тормозных колодок.

Проверка тормозных колодок и тормозных дисков

1.16. Проверьте толщину тормозных колодок и визуально проверьте состояние тормозных дисков.
Предельное значение износа тормозных колодок: 3,5 мм.
1.17. Осмотрите тормозные шланги на предмет повреждений (трещины, расслоения, подтекание жидкости). При наличии дефектов тормозные шланги следует заменить.
1.18. Вдавите внутрь поршень тормозного цилиндра, если при вдавливании поршень заедает, замените плавающую скобу в сборе. Для снятия скобы достаточно открутить нижний и верхний винты крепления скобы к кронштейну.
1.19. Произведите очистку от грязи и окалины поверхности контакта плавающей скобы сколодками.
1.20. Установку производите в обратной последовательности. Момент затяжки винта крепления плавающей скобы к кронштейну: $\mathbf{3 2} \mathbf{~ H м . ~}$

2. Проверка состояния тормозных дисков

Диск в обязательном порядке должен быть заменен при наличии сквозных трещин и задиров глубиной более 0,5 мм.

Снятие и установка передних тормозных дисков

2.1. Снимите суппорт в сборе с плавающей скобой и временно закрепите его в стороне.
При его установке момент затяжки винтов крепления: $\mathbf{1 7 2}$ Нм.
2.2. Открутите фиксирующиий винт (12) тормозного диска и снимите тормозной диск (11). Могут быть затруднены снятие и установка тормозного диска. Поэтому допускается при снятии и установке тормозного диска использовать легкий молоток.
При установке диска используйте новый

фиксирующий винт (12), момент затяжки: 22 Нм.
2.3. Произведите очистку всех контактных поверхностей, особенно поверхностей контакта торміозного дйска с фланцем ступицы. Даже мелкие инородные частицы при попадании между диском и фланцем ступицы могут привести к недопустимому биению рабочей поверхности диска.
2.4. Проверьте состояние тормозного диска.

6. Плавающая скоба суппорта
7. Кронштейн суппорта
11. Тормозной диск
12. Фиксирующий винт тормозного диска 14. Винты крепления кронштейна суппорта

Геометрические характеристики передних тормозных дисков

Толщина нового диска	28 мм
Минимально допустимая толщина	25 мм
Максимальное биение рабочей поверхнос- ти диска	$<0,01$ мм
Неплоскостность рабочей поверхности	$<0,04$ мм
Минимально допустимая толщина после проточки	Проточка не допускается

2.6. Установку производите в обратной последовательности.

Снятие и установка задних тормозных дисков

2.7. Снимите суппорт с плавающей скобой в сборе и закрепите его в стороне.

При его установке момент затяжки винтов крепления: $\mathbf{1 7 2}$ Нм.

2.8. Поверните тормозной диск таким образом, чтобы обеспечить доступ (тонкой отверткой) к храповику регулировки колодок стояночного тормоза. Вращая храповик при помощи отвертки, увеличьте зазор между колодками стояночного тормоза и тормозным диском с внутренней стороны (тормозной барабан стояночного тормоза). Если вы не можете определить, в какую сторону следует вращать храповик, то определите это опытным путем: если храповик вращался в неправильном направлении, то колодки стояночного тормоза заблокируют вращение тормозного диска (барабана стояночного тормоза). В этом случае следует повторить операцию, вращая храповик в обратном направлении.
2.9. Заблокируйте вращение тормозного диска и открутите фиксирующий винт (12).
2.10. Произведите очистку всех контактных поверхностей, особенно поверхностей контакта тормозного диска с фланцем ступицы. Даже мелкие инородные частицы при попадании между диском и фланцем ступицы могут привести к недопустимому биению рабочей поверхности диска.
2.11. Проверьте состояние тормозного диска.

Толщина нового тормоз- ного диска	10 мм
Минимальная толщина диска	8 мм
Максимальное радиаль- ное биение диска	0,15 мм
Максимальное осевое биение рабочей поверхности диска	0,03 мм
Минимальная толщина диска после проточки рабочей поверхности	Проточка диска не до- пускается

Снятие, установка и регулировка тормозных колодок стояночного тормоза

2.12. Ослабьте натяжение тросов стояночного тормоза при помощи регулировочной гайки (21).
2.13. Снимите тормозной диск.
2.14. Снимите прижимные пружины (26).
2.15. Снимите нижнюю стяжную пружину (27).
2.16.. Снимите тормозные колодки (24) с устройством регулирования зазора (18) и верхней стяжной пружиной (28).
2.17. Отсоедините от наконечника троса рымаг (25), разжимающий тормозные колодки (22).
2.18.Сборку производите в обратной последовательности.

2.19. Отрегулируйте стояночный тормоз.

2.20. Открутите один из винтов крепления заднего колеса (если установлен легкосплавный диск, то колесо следует снять) для обеспечения доступа к регулирующему храповику (18).
2.21. При помощи тонкой отвертки вращайте храповик до блокировки колеса. Затем поверните храповик на 6 зубьев в обратном направлении.
2.22. Произведите установку снятых деталей.
2.23. Отрегулируйте натяжение тросов (22).

Регулировка натяжения тросов стояночного тормоза

2.24. Полное торможение автомобиля стояночным тормозом должно достигаться нажатием на педаль стояночного тормоза на 3-4 щелчка фиксатора. Это осуществляется вращением регулировочной гайки натяжения тросов.

18. Храповик регулировки положения колодок стояночного тормоза
20. Устройство регулирования натяжения приводного троса стояночного тормоза
21. Регулировочная гайка
22. Тросы стояночного тормоза
23. Штифт
24. Тормозные колодки

25. Рычаг, разжимающий тормозные колодки
26. Прижимные пружины
27. Нижняя стяжная пружина
28. Верхняя стяжная пружина
29. Вращающаяся часть устройства регулирования зазора в стояночном тормозе
30. Неподвижная часть устройства регулирования зазора в стояночном тормозе

VN 1.020

Нижняя часть автомобиля

Проверка герметичности и состояния

Контроль прокладок трубопроводов и места их возможного истирания!

1. Проверить на наличие утечек:

- двигатель,
- коробку передач,
- механизм отбора мощности,
- раздаточную коробку,
- поворотный редуктор,
- передний мост,
- задний мост,
- рулевой механизм и насос гидроусилителя руля.

При постоянной утечке масла ее следует незамедлительно устранить и откорректировать уровень масла.
Легкое увлажнение уплотняемых мест не представляет опасности.
Все агрегаты (двигатель, коробка передач, задний мост, рулевой механизм, насос ГУР, тормозная система)

Все трубопроводы и шланги

1. Все трубопроводы, шланги и провода на двигателе, сцеплении, в топливной системе, в системе охлаждения и тормозной системе, а также проводку датчиков систем ABS, ESP и индикаторов износа тормозных колодок необходимо проверить на герметичность, отсутствие повреждения и предписанное пролегание.
2.1 Утечку сжатого воздуха в пневматической системе нужно проверить.
Автомобиль - зафиксировать против откатывания и перед проверкой на утечку

воздуха отпустить стояночный тормоз. При высокой утечке сжатого воздуха определить место утечки и устранить негерметичность.

Резиновые защитные чехлы, амортизаторы, пневмобаллоны
 Шасси и кузов

1. Bсе резервуары для топлива, охлаждающей жидкости, сжатого воздуха или вакуума, для масла, смазки и тормозной жидкости нужно проверить на герметичность и наличие повреждений. Негерметичный резервуар (напр. топливный бак, радиатор, ресивер) при необходимости - уплотнить или заменить.
2. Пневматические и гидравлические приборы - проверить на герметичность, например клапаны пневмоподвески и тормозной системы, главный тормозной цилиндр, тормозные суппорта, регулятор тормозных усилий, гидравлические насосы и гидравлические цилиндры (привода сцепления, системы опрокидывания, системы откидного борта и т.д.), а также амортизаторы. Негерметичные компоненты при необходимости - уплотнить или заменить.
3. Все крышки и облицовку - проверить на отсутствие повреждений и соответствующее крепление.

Поврежденные крышки и облицовку при необходимости следует заменить, а также закрепить.
4. Манжеты и защитные колпачки проверить на отсутствие повреждений и плотную посадку. При поврежденных или негерметичных манжетах и защитных колпачках соответствующие компоненты (например, шаровые наконечники (1) подвески оси или шарниры (2) приводных валов) проверить и при необходимости заменить.

5. Пневмобаллоны (3) следует проверить на отсутствие повреждений. Поврежденные пневмобаллоны (3) (например, трещины, отслоения, потертости и т.д.) - заменить.

Проверка состояния механических узлов рулевого управления

1. Запустите двигатель. При этом установите передние колеса в положение прямолинейного движения.
2. Проверьте зазор (a) на рулевом колесе. Рулевое колесо следует поворачивать
попеременно влево и вправо до начала движения передних колес. При превышении допустимого зазора на рулевом колесе необходимо проверить рулевой механизм и все элементы передачи рулевого усилия от рулевого механизма на повышенный зазор и при необходимости отремонтировать.
Допустимый зазор на рулевом колесе в среднем положении: 30 mm по ободу рулевого колеса

3. Проверьте рулевые тяги и наконечники рулевых Tgr (1). В наконечниках рулевых тяг ощутимого зазора не должно быть.

VN 1.024

Снятие и установка шаровых наконечников рулевых тяг

1. Снимите переднее колесо.
2. Открутите гайку (1) крепления наконечника рулевой тяги к поворотному кулаку.
3. Ослабьте контргайку (4), удерживая от вращения рулевую тягу (5).
4. Извлеките конусный палец (2) шарнира наконечника рулевой тяги из отверстия в поворотном кулаке (3).
5. Гайка
6. Шаровый шарнир наконечника рулевой тяги

7. Рулевая тяга

При установке затяните гайку (1) по схеме: 50 Нм +60 .
7. Проверьте и отрегулируйте схождение передних колес.

Сервисный компьютер ASSYST. Обновление показаний

Внимание: после завершения работ по техобслуживанию.

1. Сервисный компьютер: сбросить показания.
Для автомобилей, не оборудованных многофункциональным рулевым колесом (без кода комплектации CL4);
2. Поверните ключ в замке зажигания в положение "2".
3. Несколько раз нажмите кнопку "M» (см. стрелку) на комбинации приборов, пока не появится сообщение «Restlaufstrecke/ Restlaufzeit (остаточный пробег/время до очередного TO)»:
4. Не позднее 10 с после появления сообщения поверните ключ в замке зажигания назад в положение " 0 "
5. Нажмите и удерживайте кнопку "M".
6. Удерживая кнопку "M» в нажатом положении, поверните ключ в замке зажигания в положение «2». При этом на многофункциональном дисплее отображается значение фактического остаточного пробега до проведения ТО. Спустя 10 с раздастся звуковой сигнал, и отобразится новое значение остаточного пробега.
7. Отпустите кнопку © M ?

Для автомобилей с кодом комплектации CL4 (многофункциональное рулевое колесо)

1. Поверните ключ в замке рулевого вала в положение 2.
2. Несколько раз нажмите кнопку-стрелку (см. стрелку) левой группы кнопок многофункционального рулевого колеса, пока не появится сообщение "Restlaufstrecke/ Restlaufzeit (остаточный пробег/время до очередного TO)" на многофункциональном дисплее.

3. Нажмите кнопку " \mathbf{R} " (стрелка) на комбинации приборов. При этом на многофункциональном дисплее комбинации приборов появляется запрос: "Wollen Sie das Serviceintervall zurucksetzen (Желаете сбросить межсервисный интервал)?» Подтвердите с помощью кнопки сброса.
4. Нажмите кнопку "R" (стрелка) на комбинации приборов.
На многофункциональном дисплее комбинации приборов появляется сообщение: "Das Serviceintervall wurde zuruckgesetzt (Значение межсервисного интервал сброшено (обновлено)".

> Дополнительные работы, проводимые однократно при первом техобслуживании, далее через каждые 120000 км

Замена масла и масляного фильтра в автоматической коробке передач

722.680/682/683

1. Снимите защитные колпачки с нижней части корпуса гидротрансформатора. Поверните коленчатый вал двигателя таким образом, чтобы через отверстие корпуса была доступна сливная пробка гидротрансформатора (8).
2. Очистите сливную пробку (8) гидротрансформатора и сливную пробку (6) поддона масляного картера (3) АКПП.

Внимание: при работе с АКПП

 принимайте все возможные меры к соблюдению чистоты деталей и масла.3. Открутите сливные пробки (6) и (8).

Примечание: масло следует сливать сразу после полного прогрева АКПП.
Оцените состояние масла: если масло имеет запах горелого или содержит продукты окисления (абразивные) частицы, то замену масла следует производить со снятием поддона масляного картера и его очисткой, с промывкой маслоохладителя и маслопроводов.
4. Установите сливные пробки, заменив уплотнители (7) и (9) новыми.
5. Снимите поддон (3) масляного картера АКПП с прокладкой (2).
6. Осторожно очистите поддон.
7. Извлеките масляный фильтр (1), потянув его вниз.
8. Установите новый фильтр.
9. Установите поддон масляного картера АКПП.
При установке поддона закрутите все винты не полностью, затем произведите окончательную затяжку, затягивая последовательно винты, симметричные относительно центра плоскости поддона.
Моменты затяжки
Винт крепления поддона к АКПП: 8 Нм.
Сливные пробки: 22 Нм.
10. Залейте масло в АКПП, проверьте уровень масла и добавьте ATF, ели это необходимо. Для этого извлеките фиксатор (1) и снимите пробку трубки масляного щупа.

A. Метки уровня для измерений при $25^{\circ} \mathrm{C}$
B. Метки уровня для измерений при $80^{\circ} \mathrm{C}$

1. Фиксатор
2. Пробка

VN 1.030

Измерьте уровень масла с учетом его температуры.
11. Проверьте все стыки и соединения на наличие утечек масла.
12. Установите защитные колпачки в корпус.

Дополнительные работы при каждом ТО

Замена фильтрующего элемента пылевого фильтрадлякондиционеравзаднейчастисалона. Для дополнительной системы Tempmatik/ KLAв задней части салона код HZ7.

1. Откройте заднюю дверь.
2. Снимите панель облицовки (1) левой стенки багажного отсека.
3. Снимите рамку (3).
4. Снимите пылевой фильтр (2) с панели облицовки (1).
5. Установку производите в обратной последовательности.

Tягово-сцепное устройство со съемным шаровым пальцем и автоматической блокировкой
Измерьте диаметр шаровой головки сцепного устройства.
Минимальный диаметр: 49 мм.

Давление воздуха в шинах: корректировка Стандартное запасное колесо: снятие и установка.

Внимание: давление воздуха в шинах-см. на откидной крышке заправочного люка.

Дополнительные работы при каждом втором техобслуживании

Замена масла в раздаточной коробке (постоянный полный привод код ZG2)
После полного прогрева раздаточной коробки слейте мало, предварительно открутив пробку (2) заливного отверстия и пробку (1) сливного отверстия.
Залейте масло в количестве 0,8 л.

Моменты затяжки

- Пробки заливного отверстия (резьба M24): 40 Hm .
- Пробки сливного отверстия (резьба М14): 40 Hm .

Замена масла в переднем мосту

 (постоянный полный привод код ZG2)После полного прогрева масла в главной передаче переднего моста слейте масло, предварительно открутив пробку (2) заливного отверстия и пробку (1) сливного отверстия.
Залейте масло в количестве 0,65 л.

Моменты затяжки

- Пробки заливного отверстия: 50 Hm . - Пробки сливного отверстия: 50 Нм.

1. Пробка сливного отверстия 2. Пробка заливного отверстия
2. Редуктор переднего моста

VN 1.034

Дополнительные работы, проводимые каждые 2 года

Замена тормозной жидкости в гидравлическом приводе тормозной системы.

1. Отметьте уровень тормозной жидкости в расширительном бачке (1) с помощью наклейки полосы (например, изоляционной ленты). Если после замены тормозной жидкости уровень жидкости в расширительном бачке (1) будет

выше отмеченного ранее уровня, есть опасность, что при проведении работ (например при замене тормозных колодок) он будет переполнен, и жидкость вытечет наружу.
2. Откачайте тормозную жидкость из расширительного бачка (1) до остаточного уровня примерно в 10 mm .

3. Подключите устройство для удаления воздуха (стрелка)
Соблюдайте указания в руководстве по эксплуатации аппарата.
4. Установите рынаг автоматического регулятора тормозных усилийв положение полной нагрузки. 5. На клапан (2) прокачки наденьте шланг от резервуара для сбора тормозной жидкости.
6. Подавая воздух под давлением в расширительный бачок, откройте клапан прокачки.
Удаление воздуха продолжайте до того момента, пока из клапана прокачки не будет вытекать новая чистая жидкость, не содержащая пузырьков воздуха. Затем закройте клапан прокачки.

7. После удаления воздуха из всех ветвейтормозной системы произведите удаление воздуха из гидравлического привода сцепления, действуя таким же образом, как и при удалении воздуха из тормозной системы. Клапан прокачки сцепления (3) показан на рисунке.

Дополнительные работы, проводимые после 180000 км
Проверка степени заполнения сажевого фильтра

Производится однократно при пробеге 180000 км при помощи диагностического устройства STAR DIAGNOSIS.

Дополнительные работы,

 проводимые каждые 10 лет или через 300000 км пробегаЗамена масла в механической коробке передач 716

1. Произведите очистку корпуса МКПП вокруг пробок сливного и заливного отверстий.
2. Открутите пробку заливного отверстия (1) и пробку сливного отверстия (2). Очистите магнитный уловитель на сливной пробке.
3. Слейте масло из МКПП.
4. Закрутите пробку (2) сливного отверстия.
5. Залейте в МКПП масло. Количество залитого масла определяется повышением его уровня до нижнего края заливного (контрольного отверстия).
6. Закрутите пробку заливного отверстия.

Моменты затяжки

- Пробки заливного отверстия: 60 Нм.
- Пробки сливного отверстия: 60 Нм.

Замена масла в заднем мосту

1. Произведите очистку редуктора заднего моста вокруг пробок сливного и заливного отверстий.
2. Открутите пробку заливного отверстия (1) и пробку сливного отверстия (2). Очистите магнитный уловитель на сливной пробке:
3. Слейте масло из редуктора.
4. Закрутите пробку (2) сливного отверстия,
5. Залейте в редуктор масло (1,5 л). Количество залитого масла определяется повышением его уровня до нижнего края заливного (контрольного отверстия).
6. Закрутите пробку заливного отверстия.

Моменты затяжки

- Пробки заливного отверстия: 90 Нм.
- Пробки сливного отверстия: 90 Нм.

2. ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ ОМ 646 2,2 л СDI

Общие сведения

Дизельный двигатель OM 646 является результатом модернизации двигателя OM611, который широко использовался в прежних моделях автомобилей "Мерседес-Бенц" и устанавливался на легковые, внедорожные автомобили, на микроавтобусы и коммерческие автомобили.
Этот двигатель является многоклапанным (16 клапанов) двигателем с системой непосредственного впрыска дизельного топлива типа Common rail.
Компания «Даймлер-Крайслер AГ; выпускает 14 модификаций этого двигателя, различных по комплектации, по мощностным показателям, по уровню эмиссии вредных веществ.

Дизельный двигатель ОМ 646 2,2л r СD общий вид

VN 2.001

B документах компании производителя двигатели обозначаются шестизначным кодом. Этот код является частью номера двигателя.
Практически в автомобилях Vito-Viano используется три версии двигателя ОМ 646:
-646.982 (MC2) ($80 \mathrm{kBT}, 109$ л.с.);
-646.982 (MC3) ($110 \mathrm{kBT}, 150$ л.c. $)$;

-646.983 (MC1) (65 кBт, 88 л.с.).

Двигатель 646.983 устанавливается только в грузовых версиях автомобиля.
В каталогах запасных частей и других докумментах приводятся коды комплектации автомобилей, в том числе и те, которые касаются силового агрегата. Ниже в таблице приведены значения некоторых кодов комплектации.

Коды опций комплектации автомобилей

Опции	Содержание опции
MCl	Дизельный двигатель OM646 DE 22LA, 65 кВт (83 л.с.), при 3800 об/мин
MC2	Дизельный двигатель OM646 DE 22LA, 80 кВт (109 л.с.), при 3800 об/мин
MC3	Дизельный двигатель OM646 DE 22LA, 110 kBT (150 л.с.), при 3800 об/мин
MC5	Дизельный двигатель OM642 DE 22LA, 150 кВт (204 л.c.), при 3800 об/мин
MC7	Бензиновый двигатель М112 Е32, 160 kBT (218 л.с.), при 5700 об/мин
MC8	Бензиновый двигатель M112 E32, 140 кВт (190 л.с.), при 5600 об/мин
MC9	Бензиновый двигатель М272 E3S, 190 кВт (258 л.с.), при 5900 об/мин
(...) + MF4	Автомобиль с пониженной эмиссией вредных веществ, удовлетворяющий требованиям EU4, GR.III
MGO	Бензиновый двигатель М112 E37, 165 кВт (225 л.с.), при 5700 об/мин
MP1	Дизельный двигатель ОМ646 DE 22LA, 70 кВт (95 л.с.), при 3800 об/мин
MP2	Дизельный двигатель OM646 DE 22LA, 85 кВт (116 л.с.), при 3800 об/мин
MP3	Дизельный двигатель OM646 DE 22LA, 110 kBT (150 л.с.), при 3800 об/мин
GD0	6-ступенчатая механическая KПП типа NSG250
GD1	6-ступенчатая механическая KПП типа NSG370
G40	Автоматическая КПП
ZG2	Спецификация поставки для автомобилей с постоянным приводом на все колеса

Технические характеристики двигателя

Тягово-скоростные характеристики

VN 2.002

Конструктивные особенности и характеристики двигателей

Характеристика	Содержание характеристики
	Все модификации двигателя ОМ 646
	88,0
Диаметр цилиндра, мм	88,3
Ход поршня, мм	
Рабочий объем, см ${ }^{3}$	$\frac{2148}{18.1}$
Степень сжатия геометрическая	18
Порядок воспламенения в цилиндрах	1-3-4-2
Количество и расположение цилиндров	4 , рядный
Количество клапанов на один цилиндр	
Впускных	2
Выпускных	
Принцип действия	4-тактный дизельный двигатель с непосредственным впрыском топлив
Система подачи воздуха	Газотурбинный нагнетатель с промежуточным охладителем воздуха
Система впрыска	Система впрыска с топливным коллектором высокого давления (ТКВД) Common rail diesel injection (CDI)

Существенным конструктивным отличием является применение в двигателях, устанавливаемых на легковые автомобили, ме-

ханического двухвального устройства компенсации дисбаланса двигателя, предназначенного для улучшения комфортабель-

ности автомобиля. Установка этой модификации двигателя на грузопассажирские версии не предусмотрена.

Снятие и установка силового агрегата

1. Отсоедините отрицательный провод АКБ. Для этого выполните действия (nn. 1.1-1.6).
2. Снимите крышку (1) на основании

сиденья водителя.
1.2. Отсоедините вентиляционный шланг (3) AKE.
1.3. Снимите кронштейн (4) АКБ.
1.4. Отсоедините отрицательный провод AKБ (8) от AKБ (7).

1.5. Установку производите в обратной последовательности.
1.6. Произведите начальное программирование системы управления.
2. Снимите переднюю панель (1). Для этого выполните действия (пп. 2.1-2.22).

2.1. Снимите корпус воздушного фильтра.
2.2. Удалите масло из питающего бачка системы гидравлического усилителя рулевого управления (далее - ГУР), отсоединив возвратный маслопровод (1).
2.3. Отсоедините маслопроводы (2) от охладителя масла системы ГУР. Установите в отверстия отсоединенных шлангов заглушки.
2.4. Отсоедините шланг системы охлаждения для снятия переднего блока.
2.5. Отстегните крепление жгутов (3) электропроводки к переднему блоку.
2.6. Отсоедините быстроразъемное соединение (4) от омывателя фар и заглушите разъем.
2.7. Отсоедините трос (5) открывания капота.
2.8. Отсоедините электрические провода от верхней части переднего блока.
2.9. Удалите хладагент из системы кондиционирования.
2.10. Открутите гайку (8) от линии высокого давления.

2.11. Снимите расширяющиеся зажимы (9) 2.12. Отсоедините передний защитный поддон моторного отсека.
2.13. Снимите промежуточный охладитель нагнетаемого воздуха (интеркуллер) с воздуховодами (10).
2.14. Отсоедините жгуты электропроводки от нижней части передней панели.
2.15. Отсоедините подающую трубку (11) и

возвратную трубку (12).
2.16. Открутите винты (13).
2.17. Открутите винты (14).
2.18. Открутите винты (15).
2.19. Установите монтажное приспособление на переднюю панель.
2.20. Открутите винты (16).
2.21. Снимите переднюю панель.

1. Возвратный маслопровод
2. Маслопроводы
3. Жгут проводов передней панели
4. Быстроразъемное соединение

2.22. Установку передней панели производите в обратной последовательности.
При установке выполните следующие действия.

- Заправьте маслом систему ГУР и удалите воздух из системы.
- Проверьте и откорректируйте уровень масла в АКПП.
- Отрегулируйте положение фар.
- Проверьте правильность функционирования омывателя фар.
- Проверьте правильность работы замка капота.

3. Снимите защитный поддон моторного отсека. Для этого выполните действия ($\mathrm{nn} .3 .1-3.2$).
3.1. Снимите переднюю часть (1) защитного поддона моторного отсека, для чего выполните следующие действия.
3.1.1. Открутите винты (3) (для автомобилей с порядковым номером в VIN-коде до 243 776) или откройте замки (3) (для автомобилей с порядковым номером в VIN-коде c 243 777).
3.1.2. Снимите переднюю часть (1) защитного поддона моторного отсека.
3.1.3. Установку производите в обратной последовательности.
4. Снимите заднюю часть (2) защитного поддона моторного отсека.
3.2.1. Открутите винты (4) или откройте замки (аналогично п. 3.1.1).
3.2.3.Открутите гайки (5).
3.2.4. Снимите заднюю часть (2) защитного поддона моторного отсека.
3.2.5. Установку производите в обратной последовательности.
5. Отсоедините электрические разъемы и шланги, для чего выполните следующие действия (пn. 4.1-4.35).
4.1. Снимите крышку (1).
4.2. Отсоедините электрические разъемы на блоке управления впрыском (6).
4.3. Отсоедините злектрический разъем (2).

4.4. Отсоедините электрические разъемы (3) 4.5. Отсоедините крепления жгута (4) электропроводки двигателя и отведите жгут в сторону.

4.7. Отсоедините электрический разъем (7) от выходного каскада блока управления предпусковым подогревом (8).

4.9. Обрежьте пластиковые хомуты (10).

4.10. Многократно нажимая на педаль тормоза, "израсходуйте» вакуум в вакуумной системе.
4.11. Отсоедините вакуумный шланг (11) от усилителя тормозов (12).

4.12. Снимите вакуумные трубки (13).

4.13. Снимите передние винты кронштейна топливного фильтра (только для двигателей 646.980/981).
4.14. Снимите возвратные топливные шланги (14) (только для двигателей 646.980/981).
4.15. Для других двигателей - снимите топливопроводы (14).

4.16. Отсоедините шланг (15) от корпуса термостата (16).

4.17. Открутите винт (18).
4.18. Отсоедините шланг компрессора (17). 4.19. Заглушите соединения.
(nп. 4.17-4.19 только для автомобилей с кодами комплектации HH9 (регулируемый кондиционер) и HH4 (автоматический кондиционер).

4.20. Открутите соединение напорного шланга ГУР (19) от насоса ГУР (20).

4.21. Ослабьте хомуты (21) (рис. VN 2.019).
4.22. Снимите шланги ОЖ (22).
4.23. Ослабьте хомут (23)
4.24. Снимите шланг (24).
4.25. Отсоедините шланги (25) (стрелка).
($\mathrm{nn} .4 .21-4.25$ - для автомобилей с порядковым номером до 113950).
4.26. Открутите винт (26) (рис. VN 2.020).
4.27. Отсоедините трубку компрессора (27).
4.28. Заглушите трубки.
(пп. 4.26-4.28 только для автомобилей с кодами комплектации HZ7 (регулируемый кондиционер (Tempmatik) пассажирского отсека).

4.29. Отсоедините шланг привода сцепления (28) от МКПП.
4.30. Заглушите шланг.

4.31. Отсоедините провод (29) «массы» от силового агрегата, открутив винт (30).

4.32. Отсоедините электрический разъем (31) от МКПП.

4.33. Отсоедините провод (32) от генератоpa (33) (рис. VN 2.024).
4.34. Соединение производите в обратной последовательности.
4.35. После соединения проводов большого сечения проверьте надежность их крепления.

6. Отсоедините первичный каталитический преобразователь от фланца турбонагнетателя, для чего выполните следующие действия (п.п. 5.1-5.6).
5.1. Отсоедините электрический разъем (3) датчика кислорода (2) (рис. VN 2.025).
5.2. Снимите каталитический преобразователь ОГ (6) (рис. VN 2.027).

$\begin{array}{llll}\text { 1. Впускной воздуховод } & \text { 2. Датчик кислорода (G3/2) 3. Разъем датчика кислорода } & \text { VN } 2.026\end{array}$

5.3. Снимитесажевый финыт (6) (рис. VN2.028).
5.4. Снимите кронштейн выпускной трубы.
5.4.1. Отведите хомут (3) в сторону (рис. VN 2.025).
5.4.2. Снимите хомут (5) (рис. VN 2.025).
5.5. Снимите первичный каталитический преобразователь ОГ.
5.6. Установку производите в обратной последовательности.

Замечания по установке

- Проверьте правильность установки элементов выпускной системы и отсутствие за-

грязнений, затрудняющих проход ог.

- Проверьте выпускную систему на наличие утечек ОГ при работе двигателя.

6. Установите устройство дляподдержкиКПП. Для этого выполните действия (пп. 6.1-6.6).
6.1. Установите устройство (1) на место и зафиксируйте его болтом (2) (рис. VN 2.029).
6.2. Установите суппорт (3) так, чтобы он касался КПП, и зафиксируйте его гайками (5).
6.3. Снятие устройства (1) производите в обратной последовательности.

Действия, описанные в пп. 6.4-6.6, относятся только к автомобилям, укомплектованным постоянным полным приводом на все колеса (код комплектации ZG2)
6.4. Установите поддерживающую распорку (4).
6.5. Подведите распорку к КПП так, чтобы распорка касалась корпуса, и закрепите ее гайками (5).
6.6. Снятие распорки (4) производите в обратной последовательности.

7. Снимите карданный вал, для чего выполните следующий действия.
7.1.1. Отсоедините переднюю секцию карданного вала от раздаточной коробки (2) (только для автомобилей с полным приводом (код комплектации ZG2).
7.1.2. Отсоедините переднюю секцию карданного вала (1) от КПП (только для автомобилей без полного привода).
7.2. Отсоедините заднюю секцию карданного вала (1) от главной передачи заднего привода (3).
7.3. Снимите подвесной подшипник (4) передней секции карданного вала.
7.4. Снимите подвесной подшипник (5) задней секции карданного вала.
Обратите внимание на то, что дистанционные шайбы для автомобилей с полным приводом и без него различаются.
7.5. Снимите карданный вал (1). Для этого снимите предохранительную скобу (6).
7.6. Проверьте карданные шарниры на наличие износа.
7.6.1. При сборке нанесите консистентную смазку продленного срока действия (MB long-term grease) на шлицевые поверхности карданных валов.
7.6.2. Соедините переднюю и заднюю cekции карданного вала.

Показано для автомобилей с кодом ZG2 Неотключаемый передний привод 1. Карданный вал
2. Раздаточная коробка
3. Главная передача заднего привода
4. Передний подвесной подшипник карданного вала
5. Задняя опора карданного вала
6. Предохранительная скоба

VN 2.030
Внимание: метки на соединяемых секциях приводных валов должны располагаться так, как показано на рис. VN 2.031.

8. Снимите приводной вал переднего моста.
8.1. Отсоедините приводной вал (1) от раздаточной коробки, предварительно пометив взаимное положение фланца и шарнира.
8.2. Отсоедините приводной вал (1) от главной передачи переднего моста.

8.3. Установку производите в обратной последовательности.
9. Снимите поперечную балку.

10. Отсоедините тросы управления МКПП (АКПП).

11. Установите автомобиль на подьемной платформе.

13. Снимите силовой агрегат, для чего выполните следующие действия (nп. 13.113.9).
13.1. Снимите болт правого крепления двигателя.
13.2. Зафиксируйте капот в открытом состоянии при помощи подпорки (1) с фиксатором (2) (рис. VN 2.036)
13.3. Открутите гайки (3) и снимите кронштейн (4) (рис. VN 2.037).
13.4. Установите траверсу (5) с прикрепленной штангой (6) и закрепите ее в точках (7). 13.5. Установите С-образный кронштейн.
13.6. Отрегулируйте положениецентра масс силового агрегата при помощи гайки (8).
12. Снимите маслоотделитель.

Снятие маслоотделителя на двигателе 646.982

VN 2.035
13.7. Открутите винт левого крепления двигателя (9).
13.8. Поднимите силовой агрегат и извлеките его из моторного отсека, при необходимости регулируя положение центра масс при помощи гайки (8).
13.9. Установку силового агрегата производите в обратной последовательности.
14. Установку производите в обратной последовательности.
15. Удалите воздух из гидравлического привода сцепления (для МКПП 716.6), для чего выполните следующие действия (пп. 15.115.5).
15.1. Снимите заглушку (1) на картере сцепления. (рис. VN 2.038)

15.2. Снимите колпачок на коаксиальном рабочем цилиндре сцепления.
15.3. Открутите клапан прокачки при помощи торцевого ключа (2).
15.4. Удалите воздух из гидравлической системы.
15.5. Закрутите клапан прокачки, закройте его колпачком и установите заглушку (1).

16. Проверьте легкость хода тросов управления КПП: троса выбора передачи и троса включения выбранной передачи. При необходимости произведите их регулировку.
17. Проверьте отсутствие подтеканий технических жидкостей при работающем двигателе.

Узлы и агрегаты в передней части двигателя

1. Вакуумный насос
2. ТНBД
3. Поликлиновый ремень
4. Hacoc OЖ
5. Передняя крышка ГБЦ
6. Натяжное устройство

поликлинового ремня
7. Винтовая крышка масляного фильтра
8. Hacoc FYP
9. Гаситель крутильных колебарний со шкивом коленчатого вала
10. Поддон масляного картера
11. Передняя крышка блока цилиндров
12. Компрессор кондиционера (A9)

Снятие и установка головки блока цилиндров (ГБЦ)

1. Отсоедините отрицательный провод AKБ.
2. Снимите корпус воздушного фильтра.
3. Слейте охлаждающую жидкость.
4. Открутите винт (1) крепления турбонагнетателя к нижней части выпускного коллектора.
5. Снимите крепление EGR. (Только для двигателей с кодом MS3. Версия двигателя: Euro 3.)
6. Снимите воздушный коллектор.
7. Снимите декоративную панель ГБЦ.
8. Отсоедините хомуты (2).
9. Отсоедините шланг (3) ОЖ от радиатора.
10. Отсоедините вентиляционный шланг (4) от расширительного бачка.
11. Снимите датчик температуры каталитического преобразователя ОГ. (Только для двигателей с кодом KA1: наличие сажевого фильтра, начиная с 25.9.06.)
12. Снимите шланг (5), соединяющий двигатель с впускным воздуховодом, совместно с вентиляционным шлангом (6). Для этого снимите хомут с патрубка турбонагнетателя и разъедините разъем датчика (14) давления на выходе из воздушного фильтра. Отсоедините вентиляционный шланг (6) от маслоотделителя.
13. Отсоедините жгут электропроводки, пометив места соединения разъемов.
14. Отсоедините возвратный топливопровод от форсунок.
15. Снимите вакуумный насос (17), открутив винты (16).
16. Снимите аккумулятор вакуума (7). (Только для двигателей 646.982/983.)
17. Отведите в сторону, насколько возможно, вакуумные трубки (8) с аккумулятором вакуума (7).
18. Снимите топливный насос высокого давления (далее - ТНВД) (см. рис. VN 2.041).
19. Открутите винт (11).
20. Снимите кронштейн (12).
21. Снимите хомут и отсоедините возвратный топливопровод.

Снятие ТНВД

1. Вакуумный насос
2. Топливопровод высокого давления
3. THBA
4. Топливопроводы
5. Винты
6. Уплотнительное кольцо
7. Приводной валик ТНВД
8. Датчик температуры топлива (В50 или B50/3)
9. Клапан регулирования подачи топлива
(Y94 или Y94/3)
VN 2.041
23.Отведите жтут электропроводии ГБЦвсторону. 24. Снимите форсунки (см. рис. VN 2.043).

При установке винт прижима следует затянуть по схеме $7 \mathrm{Hm}+90^{\circ}+90^{\circ}$.
25. Снимите маслозаливную трубку (2) АКПП (только при наличии АКПП) (см. рис. VN 2.044).
26. Отсоедините шланг ОЖ (1) от ГБЦ, для чего ослабьте хомут (4), и отведите шланг в сторону.
27. Открутите винт (5) хомута крепления направляющей трубки масляного щупа (6).
28. Снимите трубку подачи масла к турбонагнетателю (см. рис. VN 2.045).
29. Открутите винты (13) (см. рис. VN 2.040) крепления турбонагнетателя к выпускному коллектору.

1. Топливопроводы высокого давления подачи топлива к форсункам
2. Топливопровод высокого давления подачи топлива к ТКВД
3. Винт

Снятие форсунок

1. Ударный съемник
2. Винтовой стержень ударного съемника
3. Резьбовой переходник
4. Датчик положения распределительного вала (B6/17)

VN 2.043
30. Проверьте правильность начальных установок распределительных валов (см. рис. VN 2.046). Для этого нужно проверить взаимное положение распределительных валов и взаимное положение коленчатого вала и системы распределительных валов.
4. Соединитель типа Banjo bolt
5. Датчик давления в ТКВД (B4/6)
6. Клапан регулирования давления топлива (Y74)
7. Винт крепления TКВД
8. Возвратный топливопровод

VN 2.042

Проверка взаимного положения распределительных валов

30.1. Проверьте взаимное положение распределительных валов. Отверстия (B) зубчатых колес (1) и (2) должны находиться напротив друг друга (см. рис. VN 2.047). Фиксация взаимного положения распределительных валов может производиться при помощи скобы-фиксатора, устанавливающегося в отверстия (А) шестерен сквозь отверстия, имеющиеся в крышках передних подшипников распределительных валов.

Проверка взаимного положения коленчатого вала и системы распределительных валов

30.2. Проверьте взаимное положение коленчатого вала и системы распределительных валов.
При установке коленчатого вала в положение BMT поршня первого цилиндра метки на распределительных валах должны совместиться с метками на крышках подшипников распределительных валов. Необходимым условием достоверности результатов такой проверки является установка подвижной части натяжного устройства цепи в рабочее положение.

СНятие ГБL (показано на двигателе 646.982, начиная с номера 007338) 1. Шланг ОЖ
2. Маслозаливная трубка АКПП
4. Хомут
5. Винт
6. Направляющая трубка масляного щупа 7. Винты
8. Винты крепления ГБЦ

32. Снимите переднюю крышку ГБЦ (см. рис VN 2.048).

33. Снимите промежуточную шестерню привода ТНВД (см. рис. VN 2.049).
34. Снимите распределительные валы (1) и корпус распределительных валов (2) (см. рис VN 2.050).

1. Lenь TPM
2. Звездочка распределительного вала выпускных клапанов
3. Винты крепления звездочки распределительного вала выпускных клапанов
4. Винт крепления промежуточной шестерни привода ТНВД
5. Втулка
6. Промежуточная шестерня привода ТНВД
7. Штифт, фиксирующий положение шестерни распределительного вала впускных клапанов

VN 2.049

Снятие

34.1. Снимите крышку головки блока цилиндров (4) (см. рис. VN 2.051).
34.2. Установите поршень цилиндра номер (1) в ВМТ. Двигатель следует вращать за коленчатый вал по часовой стрелке. Недопустимо вращать двигатель за распределительный вал, а также

вращать его в обратном направлении. При сборке совместите метки распределительного вала и крышек подшипников, шкива ремня демпфера колебаний (стрелка).
34.3. Зафиксируйте распределительный вал (1) впускных клапанов при помощи фик-

сатора (3) (отверстие A). Отверстия (B) на зубчатых колесах распределительных валов должны расположиться напротив друг друга.
34.4. Снимите переднюю крышку (6) головки блока цилиндров.

34.5. Отсоедините цепное колесо (11) привода распределительного вала (2) выпускных клапанов и снимите его вместе с цепью (см. puc. VN 2.052). Вал удерживайте ключом.
34.6. Снимите крышки подшипников (13) распределительных валов. Отпустите винты крепления (12) крышек подшипников (13) равномерно в несколько проходов, пока не будут равномерно сняты напряжения затяжки. Крышки имеют маркировку.
34.7. Снимите распределительные валы впускных (1) и выпускных (2) клапанов.

Установка

34.9. Установите распределительный вал выпускных клапанов (1) и распределительный вал впускных клапанов (2). Совместите метки (B) на зубчатых колесах распределительных валов пары и метки на распределительных валах с метками на крышках подшипников (см. рис. VN 2.051).
34.10. Установите крышки подшипников распределительного вала (13) (см. рис. VN 2.052). Устанавливайте крышки (13) в обратном порядке, винты (12) затягивайте последовательно, поворачивая каждый винт на один оборот за проход. Крышки имеют маркировку (см. рис. VN 2.053): они последовательно пронумерованы в направлении спереди назад, крышки впускного распределительного вала промаркированы E1-E5 (E1-E6), выпускного А1-A5 (A1-A6).

Моменты затяжки резьбовых соединений

Винт крепления колеса зубчатого к распределительному валу - 18 Нм.
Винт крепления крышки подшипников - 9 Нм. Болт крепления направляющей к впускному распределительному валу - 50 Hm .
35. Открутите винты (7) (см. рис. VN 2.044).
36. Ослабьте винты (8) (см. рис. VN 2.044) крепления ГБЦ в последовательности, показанной на рис. VN 2.054.

37. Снимите ГБЦ при помощи легкого постукивания пластиковой киянкой.

38. Установку производите в обратной последовательности. Перед установкой проверьте пригодность винтов крепления ГБЦ для дальнейшего использования (см. рис. VN 2.056).

Проверка длины винтов
 крепления ГБЦ

Резьба: M 12

Длина (L) нового 102 мм
Максимальная длина (L) 104 мм VN 2.056

Последовательность затяжки винтов крепления ГБЦ показана на рис. VN 2.057. В этой последовательности следует производить затяжку винтов на каждом из четырех этапов.

Последовательность ослабления винтов крепления ГБL

Моменты затяжки

Винт крепления декоративной панели к клапанной крышке		9 Hm
Винт крепления ГБЦ к передней крышке блока цилиндров M8		20 Hm
Винт крепления передней крышки ГБЦ		14 Hm
Винты крепления ГБЦ к блоку цилиндров (БЦ) M12	$Э \tan 1$	15 Hm
	$Э \tan 2$	60 Hm
	Этап 3	90°
	$Э \tan 4$	90°
Фланцевое соединение выпускного коллектора с турбонагнетателем		30 Hm
Винт крепления масляного трубопровода к турбонагнетателю		18 Hm
Винт крепления масляного трубопровода к головке блока цилиндров		9 Hm
Винт крепления передней строповочной скобы к ГБЦ		18 Hm
Винт крепления задней строповочной скобы к ГБЦ		9 Hm
Гайка шпилечного соединения выпускного коллектора с ГБЦ		20 Hm
Винт крепления декоративной панели к клапанной крышке		9 Hm

Крышка клапанного механизма

1. Крьшка клапанного механизма
2. Крышка клапанного механизма для двигателей с кодом комплектации (MF4)
3. Фигурная пластина
4. Винт M5
5. Верхняя панель крышки клапанного механизма
6. Крышка маслозаливной горловины
7. Прокладка крышки маслозаливной горловины
8. Прокладка крышки клапанного механизма
9. Прокладка
10. Винт крепления крышки клапанного механизма
11. Маслоотделитель
12. Прокладка
13. Винт крепления маслоотделителя $\mathrm{M} 6 \times 30$ мМ
14. Уплотнительное кольцо
15. Уплотнительное кольцо
16. Прокладка маслоотделителя
17. Воздуховод между клапаном-регулятором давления и воздушным коллектором
18. Воздуховод между клапаном-регулятором давления и воздушным коллектором (MF4)

VN 2.058

Ремонт ГБL

Ремонт ГБЦ состоит в полной разборке и проверке состояния деталей:

- корпуса ГБЦ (привалочная плоскость ГБL);
- клапанов (износ штока, состояние запирающей поверхности, наличие прогаров);
- направляющих втулок клапанов (износ);
- седел клапанов (состояние запирающих поверхностей);
- рабочих поверхностей подшипников распределительных валов (износ);
- установочных поверхностей гидрокомпенсаторов (износ);
- сальников клапанов (эластичность, состояние маслосъемной кромки).

После снятия ГБЦ следует проверить значения контрольных размеров ГБЦ.

Снятие и установка клапанов

1. Установите головку блока цилиндров (7) на плоскую поверхность.
2. Установите приспособление для сжатия пружин (9) на головку блока цилиндров.
3. С помощью приспособления (9) сожмите пружины клапанов так, чтобы сухари (6) вышли из конусного отверстия в

Контрольные размеры ГБЦ

Расстояние (а) от центра тарелки клапана до привалочной плоскости ГБЦ	Выпускные	$\begin{gathered} 1,0- \\ 1,4 \mathrm{~mm} \end{gathered}$
	Впускные	$\begin{gathered} 1,1- \\ 1,5 \mathrm{~mm} \end{gathered}$
Расстояние от торца штока клапана до внутренней поверхности подшипника распределительного вала	Выпускные	$\begin{gathered} 21,8- \\ 22,6 \\ \text { MM } \end{gathered}$
	Впускные	$\begin{aligned} & 21,7- \\ & 22,5 \\ & \text { MM } \end{aligned}$
Высота ГБЦ (H) без кор- пуса распре- делительных валов	Новой ГБЦ	$\begin{gathered} 126,85- \\ 127,15 \\ M M \end{gathered}$
	Минимальный размер после обработки	$\begin{gathered} 126,65 \\ \text { MM } \end{gathered}$

верхней опоре (5) клапанной пружины.
4. Магнитным стержнем (10) извлеките сухари (6).
5. Снимите опоры пружины клапана верхние (5) и пружины клапанов (4).
6. При помощи щипцов (11) для снятия

a. Расстояние от центра тарелки клапана до привалочной плоскости ГБL
Н. Высота ГБЦ без корпуса распределительных валов

сальников клапанов снимите сальники клапанов (3).
7. Снимите опоры пружины клапана нижние (2).
8. Поднимите головку блока цилиндров (7) и извлеките клапаны (1).

Контрольные параметры клапанов

Установку производите в обратном порядке. При установке сальников клапанов смажьте их маслом и запрессуйте при по-

Седла клапанов

Параметр	Значения
Диаметр тарелки: - впускные - выпускные	$\begin{aligned} & 28,6-28,8 \text { мM } \\ & 26,1-26,3 \mathrm{~mm} \end{aligned}$
Уголфаски седла	45°
Диаметр стержня: - впускные - выпускные	$\begin{aligned} & \text { 6,960-6,975 мМ } \\ & 6,955-6,970 \mathrm{MM} \end{aligned}$
Толщина тарелки клапана: - впускные - выпускные	$\begin{aligned} & 1,7-1,9 \mathrm{~mm} \\ & 1,8-2,0 \mathrm{~mm} \end{aligned}$
Отклонение от соосности седел клапанов (относительно оси направляющей втулки): - впускной клапан - выпускной клапан	$\begin{aligned} & 0,03 \mathrm{~mm} \\ & 0,03 \mathrm{~mm} \end{aligned}$
Длина клапанов: - впускных - выпускных	$\begin{aligned} & 103,9-104,3 \mathrm{Mm} \\ & 104,3-104,7 \mathrm{~mm} \end{aligned}$
Маркировка на тарелке клапанов: - впускных - выпускных	$\begin{aligned} & \text { E } 62800 \\ & \text { A } 62800 \end{aligned}$

мощи оправки (12) (см. рис. VN 2.060). Для защиты маслосъемной кромки сальника клапана на каждый клапан следует

Направляющие втулки клапанов

Если зазор в паре втулка - клапан завышен (обычно максимально допустимое значение составляет 0,1 мм).
Обычный зазор в новом двигателе составляет 0,03-0,07 мм.

Параметр		Значение
Ширина запирающей поверхности седел клапанов	Впускные	$1,1-1,4$ мм
	Выпускные	$1,1-1,4$ мм
Угол между осью и образующей конуса запирающей по- верхности седла клапана	Впускные	$45 \pm 0,5$
	Выпускные	$45 \pm 0,5$
Верхний корректирующий угол	Впускные	60
	Выпускные	60
Отклонение от соосности	Впускные	0,05 мм
	Выпускные	0,05 мм

установить защитный пластиковый колпачок.

Обработка ГБЦ под установку направляющих втулок клапанов

Обработка отверстий при замене направляющих втулок клапанов производится при установленном корпусе распределительных валов. При этом базовой поверхностью для обработки является цилиндрическая поверхность отверстий под гидравлические компенсаторы зазоров.
Обработка производится специальным инструментом.
Внимание: нагревание ГБЦ или охлаждение направляющих втулок клапанов для их установки не является необходимым. Использование направляющих втулок клапанов со стопорным кольцом прекращено с ноября 1994 г.
После установки втулок в ГБЦ произведите финишную обработку отверстий во втулках.

Стандартное значение выступания: 10,2-10,4 Mm

VN 2.064

Контрольные размеры направляющих втулок клапанов

Параметр		Значения
Диаметр отверстия в ГБЦ под направляющую втулку клапана	Стандартный размер	12,5-12,511 mM
	Стандартный размер I	12,52-12,531 mm
	Ремонтный размер I	12,7-12,711 mm
Наружный диаметр направляющей втулки клапана	Стандартный размер	12,540-12,551 mm
	Стандартный размер । (зеленая метка)	12,560-12,571 mm
	Ремонтный размер । (красная метка)	12,740-12,751 mm
Внутренний диаметр направляющей втулки клапана	Впускные	7,000-7,015 Mm
	Выпускные	7,000-7,015 Mm
Длина (L) направляющей втулки клапана		$37,5 \mathrm{~mm}$
Натяг посадки втулки в ГБL		0,029-0,051 mm
Размер С		10,2-10,4

Моменты затяжки резьбовых соединений

Винт крепления крышки привода распределительного механизма к головке блока цилиндров М8	20 Hm
Винт крепления передней крышки к головке блока ци- линдров	14 Hm
Винт крепления головки блока цилиндров к блоку, 1 этап	60 Hm
Винт крепления головки блока цилиндров к блоку, 2 этап	90
Винт крепления головки блока цилиндров к блоку, 3 этап	90
Фланцевое соединение выпускного коллектора с турбо- нагнетателем	30 Hm
Болт крепления масляного трубопровода к турбонагне- тателю	18 Hm
Болт крепления масляного трубопровода к головке блока цилиндров	9 Hm

Проверка гидравлических компенсаторов зазоров в приводе клапанов

Нажмите подходящим инструментом (2) на толкатель клапана (1), включающий в себя гидравлический компенсатор зазора, нормальным усилием руки. При таком нажатии все гидрокомпенсаторы должны слегка податься вниз. Если податливость какого-либо из гидрокомпенсаторов выше, чем у остальных, то такой гидрокомпенсатор следует заменить.

1. Гидрокомпенсатор
2. Инструмент

VN 2.066

Разборка и ремонт нижней части двигателя

Для обеспечения доступа к деталям КШМ следует выполнить следующие действия.
Снять все детали натяжного устройства ремня привода вспомогательных механизмов.
Снять поддон масляного катера.
Снять шкив коленчатого вала.
Снять маховик.
Снять переднюю крышку блока цилиндров. Снять заднюю крышку блока цилиндров.

Снятие и установка коленчатого вала

1. Снимите крышки шатунных подшипников.
2. Снимите крышки коренных подшипников.
3. Извлеките коленчатый вал из постели.
4. Извлеките поршни с шатунами в сборе из блока цилиндров.
5. Извлеките стопорные кольца, фиксирующие поршневые пальцы в поршнях.
6. Извлеките поршневые пальцы и разъедините поршни и шатуны.
Внимание: шатуны, крышки шатунных подшипников при сборке должны быть установ-

лены правильно. Поэтому при разборке КШМ нанесите метки на шатуны и на крышки шатунных подшипников. Также отметьте правильное положение шатуновв блоке цилиндров.
Внимание: на новых поршнях сверху нанесена стрелка, которая при правильной установке

1. Вал коленчатый
2. Верхний вкладыш коренного подшипника
3. Верхний упорный вкладыш, регулирующий осевой разбег коленчатого вала
4. Нижний вкладыш коренного подшипника
5. Нижний упорный вкладыш, регулирующий осевой разбег коленчатого вала
6. Крышка коренного подшипника

6а. Крышка подшипника №3, предназначенная для установки упорных вкладышей, регулирующих осевой разбег коленчатого вала
7. Винт крепления крышки

коренного подшипника

VN 2.067

поршня в блок цилиндров должна быть направлена в сторону привода ГРМ. Если при ремонте будут использованы старые поршни, то перед разборкойнанеситеметкиправильной установки поршней, так как на старых поршнях стрелка может быть не видна (см. рис. VN 2.087).

Проверка состояния и ремонт деталей шатунно-поршневой группы (шПГ) и кривошипно-шатунного механизма (КШМ)

Шатунно-поршневая группа деталей (шПг). Состав

1. Шатуны (А 61103005200) с последующей заменой на (А 6460300020.004)
2. Втупки верхней головки шатуна (А611 0380150)
3. Винты (А 11203800 71)
4. Вкладыши шатунных подшипников, комплект стандартный размер 48,00 мм (A 6110300060)
5. Вкладыши шатунных подшипников, комплект ремонтный размер №1 47,75 мм (А 61103001 60)
6. Вкладыши шатунных подшипников, комплект ремонтный размер №2 47,50 мм (А 6110300260)
7. Вкладыши шатунных подшипников, комплект ремонтный размер №3 47,25 мm (A611 0300360)
8. Вкладыши шатунных подшипников, комплект ремонтный размер №4 47,00 мм (A611 03004 60)
9. Поршни комплект стандартный размер 88,00 мм (611030 10 17)
10. Поршневые кольца, комплект стандартный размер $88,00 \mathrm{~mm}$ (A 61103003 24).
11. Пружинное стопорное кольцо СЗО $\times 2,0$

VN 2.068
Кривошипно-шатунный механизм (КШМ). Состав

Примечание: на рисунке показан вариант коленчатого вала, оснащенный приводной шестерней балансирного механизма и балансирным механизмом, которые на двигателях ОМ646, применяемых для описываемого автомобиля, не устанавливаются. Эти узлы показаны для сведения автомехаников.
Рекомендуем обратить внимание на количество модификаций коленчатого вала, информация о которых приведена для лучшего понимания разнообразия конструкций семейства двигателей ОМ 646.
Проверка состояния деталей ШПГ и КШМ состоит в проведении следующих работ.

- Проверки состояния блока цилиндров.
- Проверки состояния коленчатого вала.
- Проверки состояния шатунов.

Ремонт ШПГ и КШМ состоит в проведе-

нии следующих работ.

- Ремонта блока цилиндров, включающего в себя расточку гильз цилиндров в ремонтный размер или замену гильз, механическую обработку верхней плоскости, замену (при необходимости) заглушек рубашки охлаждения, замену заглушек масляных каналов (после очистки масляных каналов).
- Ремонта коленчатого вала, заключающегося в шлифовке шеек подшипников скольжения до ремонтных размеров, очистке масляных каналов и грязеуловителей.
- Подбора поршней по результатам ремонта блока цилиндров.
- Подбора вкладышей коренных и шатунных подшипников по результатам проверки и обработки коленчатого вала.
- Замены верхних втулок шатунов по результатам проверки шатунов.

Проверка состояния блока цилиндров

Проверка состояния зеркала цилиндров
Проверка состояния блока цилиндров состоит в проведении следующих работ.

- Визуальной проверки состояния зеркала цилиндров.
- Измерения диаметра цилиндров.
- Визуальной проверки состояния верхней плоскости разъема (с ГБЦ).
- Измерении отклонений от плоскостей разъема с ГБЦ, с поддоном масляного картера и с коллекторами.

Визуальная проверка состояния зеркала цилиндров

Глянцевые участки, потертости, отдельные блестящие участки, например, в середине цилиндра или в зоне винтов крепления ГБЦ.
Блок цилиндров пригоден к дальнейшему использованию.

Видимые риски, следы трения, начинающиеся в зоне верхней мертвой точки верхнего поршневого кольца и нисходящие вниз.
Не осязаемые следы сухого трения, возникающие в результате смыва топливом масляной пленки, например, при частых пусках холодного двигателя в режиме эксплуатации автомобиля на короткие дистанции.
Такие "сглаженные" следы трения, возникающие на зеркале цилиндре преимущественно в зоне винтов крепления головки блока цилиндров и на участке бокового давления юбки поршня, находятся в пределах нормы.
Поршневые кольца не повреждены.
Блок цилиндров пригоден к дальнейшему использованию.

Кольцеобразные видимые оттиски на зеркале цилиндра в зоне верхней и нижней мертвых точек поршневых колец признаком неисправности не являются.
Блок цилиндров пригоден к дальнейшему использованию.

Проверка и обработка верхней плоскости блока цилиндров

a. Выступание поршня
Н. Высота блока цизиндров от оси отверсгий коренных подшипников
Н1. Высота блока цилиндров от плоскости разъема с поддоном масляного картера
H2. Расстояние от плоскости разъема с поддоном масляного картера до оси отверстий коренных подшипников

$$
\text { VN } 2.074
$$

Подбор поршней стандартного размера

При замене гильз цилиндры обрабатываются в стандартный размер. Диаметр цилиндров, обработанных на предприятии-изготовителе, соответствует трем классам точности: А, В и Х .
Метка, обозначающая класс точности данного цилиндра, размещена в месте, обозначенном на рисунке буквой (К).
Аналогично цилиндрам двигателя поршни стандартного размера также разделены на три размерные группы: А, В и Х. Маркировка размерной группы поршня нанесена на днище поршня в точке (N) (см. рис. VN 2.075).
При установке новых деталей стандартного

Измерение диаметра цилиндров

Контрольные параметры цилиндров

Параметр		Значения
Максимальное отклонение от плоскости		$0,10 \mathrm{~mm}$
Внутренний диаметр гильзы цилиндра	Номинальный размер	88,0 mm
	Размерная группа A	88,000-88,006 MM
	Размерная группа X	88,006-88,012 MM
	Размерная группа B	88,012-88,018 MM
Шероховатость (Rz), максимальное значение		0,009-0,012 Mm
Волнистость (Wt), максимальное значение		0,012 MM
Зона контроля размеров цилиндра		Верхняя, средняя, нижняя, в продольном и поперечном направлениях - всего 6 измерений
Предельный износ цилиндра в продольном и поперечном направлениях		0,020 mm
Предельные отклонения от цилиндричности для нового цилиндра		0,000-0,007 Mm

Контрольные параметры плоскостных элементов блока цилиндров

Параметр	Значение
Высота блока цилиндров от оси отверстий коренных подшипников	$234,97-235,03$ мм
Высота блока цилиндров от плоскости разъема с поддоном масля- ного картера	$299,95-300,05$ мм
Расстояние от плоскости разъема с поддоном масляного картера до оси отверстий коренных подшипников	$64,98-65,02 \mathrm{mм}$
Шероховатость (Rz), максимальное значение	0,012 мм
Волнистость (Wt), максимальное значение	0,03 мм
Отклонение от плоскостности в продольном направлении	0,03 мм
Отклонение от плоскостности в поперечном направлении	0,05 мм
Отклонение от параллельности верхней и нижней плоскостей разъ- ема	

размера маркировка на поршне должна соответствовать маркировке на блоке цилиндров для каждого цилиндра в отдельности. Значения контрольных параметров поршней представлены в таблице.
Подбор ремонтных размеров поршня сле-

дует производить, исходя из размеров, приобретенных для ремонта поршней.
Далее специалист, производящий расточку цилиндров, должен ориентироваться на нормированные зазоры в паре цилиндр - поршень.

Проверка состояния коленчатого вала

Проверка состояния коленчатого вала состоит в визуальном осмотре вала на предмет повреждений и видимых признаков износа, измерении диаметра каждой шейки при помощи микрометра, измерении радиального биения шеек коленчатого вала с помощью индикатора часового типа при установке крайних коренных шеек вала на измерительные призмы.

Измерение шеек подшипников коленчатого вала

Измерение биения шеек коленчатого вала

Измерение производится в точках (A) и (B) так, как показано на рис. VN 2.072, в двух взаимно перпендикулярных направлениях \mathbf{X} и \mathbf{Y}.

Контрольные параметры коленчатого вала

Параметр	Значения
Допуски на обработку: - некруглость коренных и шатунных шеек, макс. - предельный износ - конусность коренных и шатунных шеек, макс. - предельный износ	0,005 мм $0,010 \mathrm{~mm}$ $0,010 \mathrm{~mm}$ $0,015 \mathrm{~mm}$
Некруглость коренных шеек, макс: - шейки 2 и 4 - шейки 3	$\begin{aligned} & 0,07 \mathrm{~mm} \\ & 0,10 \mathrm{~mm} \end{aligned}$
Осевой зазор в подшипниках, макс.	0,02 Mm
Переходные радиусы шейки коренных подшипников	2,5-3,0 мм
Дисбаланс коленчатого вала, макс.	15 cmr
Диаметр коренных шеек: - нормальный размер - 1-й ремонтный размер -2-й ремонтный размер - 3-й ремонтный размер -4-й ремонтный размер	57,950-57,965 мм 57,700-57,715 мм 57,450-57,465 мм 57,200-57,215 мм 56,950-56,965 мм
Диаметр шатунных шеек: - нормальный размер - 1-й ремонтный -2-й ремонтный -3-й ремонтный -4-й ремонтный	47,940-47,965 мм 47,700-47,715 мм 47,450-47,465 мм 47,200-47,215 мм 46,950-46,964 мм
Диаметр под вкладыши: - коренных подшипников - шатунных подшипников	$\begin{aligned} & 62,500-62,519 \mathrm{mм} \\ & 51,600-51,614 \mathrm{mм} \\ & \hline \end{aligned}$
Некруглость отверстий, макс.	$0,02 \mathrm{~mm}$
Радиальный зазор в коренном подшипнике	0,03-0,05 mm
Износ макс.	$0,080 \mathrm{~mm}$
Осевой зазор в коренном подшипнике	0,10-0,25 мм
Износ макс.	0,30 mm

Данные для подбора вкладышей коренных подшипников коленчатого вала

Размерные группы (дополнительный номер запчасти) (цвет маркировки)	Толщина вкладыша
При номинальном размере коленчатого вала:	
-1-я размерная группа (№ 52) (синий)	$2,255-2,260$ мм
-2-я размерная группа (№ 54) (желтый)	$2,260-2,265$ мм
-3-я размерная группа (№ 56) (красный)	$2,265-2,270$ мм
-4-я размерная группа (№ 57) (белый)	$2,270-2,275$ мм
-5-я размерная группа (№ 58) (фиолетовый)	$2,275-2,280$ мм

Ремонтные размеры образуются путем утолщения каждого вкладыша на 0,125 мм.

Подбор вкладышей коренных подшипников

Подбор вкладышей производится по результатам точного измерения диаметров шеек коленчатого вала при помощи таблицы данных для подбора вкладышей.
Кроме того, можно воспользоваться методикой определения расчетного зазора в подшипниках коленчатого вала на основе измерения коленчатого вала и отверстий коренных подшипников при установленных вкладышах.
Для этого следует измерить диаметр отверстий посадочных мест под вкладыши в направлении (А) (например, 62,51 мм).

Затем измерить диаметр коренных шеек коленчатого вала (например, 57,95 мм).
На основании измерений можно определить толщину вкладышей.
Например:
62,51 мм (диаметр отверстия коренного подшипника) - 57,95 мм (диаметр шейки коренного подшипника) $=4,55 \mathrm{mм}$.
Из полученного результата вычитаем среднее нормативное значение зазора в коренном подшипнике ($0,03 \mathrm{mм}+0,05 \mathrm{mм}$) : $2=$ 0,04 мм):
$4,55-0,04=4,51 \mathrm{~mm}$.
Полученное число является двойной толщиной вкладыша, ее следует разделить на 2:
$4,51: 2=2,255 \mathrm{~mm}$.
Таким образом, расчетная требуемая толщина вкладыша в данном примере составит $2,255 \mathrm{~mm}$.
После этого при помощи таблицы следует подобрать вкладыш.
Например, при толщине 2,255 мм следует выбрать верхний и нижний вкладыши с синей меткой, что соответствует 1-й размерной группе.

Примечание: этот способ подбора вкладышей годится для стандартного размера коленчатого вала.
При необходимости нужно произвести ремонт изношенного коленчатого вала. Следует подобрать ремонтный размер и приобрести соответствующие вкладыши. Затем - на основании измерений фактического диаметра отверстия с установленными вкладышами (из затянутых крышках коренных подшипников) произвести обработку коленчатого вала так, чтобы значение фактического зазора в каждом подшипнике находилось в нормативных пределах ($0,03-0,05 \mathrm{mм}$).

Установка крышек коренных подшипников

Ось посадочного отверстия под вкладыш в крышке коренного подшипника смещена относительно средины расстояния между осями винтов крепления крышки на 0,5 мм,
для того чтобы крышку можно было установить только в одном положении. Дополнительно можно проверить правильность установки крышки по ориентации выступа, имеющегося на нижней части крышки. Этот выступ имеет характерную форму, и его следует ориентировать так, как показано на рисунке (стрелка). На рисунке показан вид на переднюю часть блока цилиндров.

Затяжка винтов креплєния крышек коренных подшипников коленчатого вала
Схема приложения усилий затяжки винтов крепления крышек коренных подшипников: $50 \mathrm{Hm}+95^{\circ}$.
Последовательность затяжки показана на рис. VN 2.082.

Установка поршней

Установка поршневых колец

Стыки поршневых колец должны располагаться по окружности цилиндра на расстоянии 120°.
При установке стык пружинного расширителя расположите на 180° по отношению к разъему маслосъемного кольца.

При установке поршневых колец следует замерить осевой зазор между кольцом и стенкой канавки поршня и зазор в замке кольца при установке кольца в цилиндр без поршня.

Контрольные параметры для поршней и поршневых колец

Параметр		Значения
Выступание поршня над плоскостью разъема нового блока цилиндров		0,38-0,62 мм
Зазоры по высоте между поршневыми канавками и кольцами	Канавка 1	0,12-0,16 mm
	Канавка 2	0,05-0,09 mм
	Канавка 3	0,03-0,07 mm
Зазоры в замке поршневых колец	1-екомпрессионное кольцо	0,22-0,42 mm
	2-екомпрессионное кольцо	0,20-0,40 мm
	Маслосъемное кольцо	0,20-0,40 мм
Зазор между цилиндром и поршнем	- новый двигатель	0,025-0,035 мм
	- предельный износ	0,08 мм
Диаметр поршня, стандартные размеры	Группа A	87,875-87,881 Mm
	Группа X	87,880-87,888 мм
	Грyпna B	87,887-87,893 mm
Диаметр поршня, ремонтные размеры	1-й ремонтный (группа +5)	87,918-87,932 мm
Диаметр поршня, ремонтные размеры	2-й ремонтный (Группа +10)	87,968-97,982 мм
Диаметр поршня, ремонтные размеры	3-й ремонтный (Группа +50)	88,368-88382 мm
Различие по массе установленных в двиг	атель поршней	4 r (предельный износ 10 r)

Проверка и ремонт шатунов
Замена втулки верхней головки шатуна

Для замены изношенной втулки верхней головки шатуна ее следует выпрессовать и запрессовать новую при помощи гидравлического пресса и специальных оправок. При этом следует обращать внимание на совмещение смазочного отверстия во втулке с масляным каналом в шатуне.

Установка втулки верхней головки шатуна
b. Ширина головки шатуна
d. Внутренний диаметр втулки
d1. Внутренний диаметр головки шатуна Стрелками указаны отверстия для смазки

VN 2.086

Контрольные параметры для шатунов

Параметр	Значения
Ширина шатуна по кромке отверстий большой и малой головки	$21,940-22,000$ мм
Диаметр отверстия большой головки	$51,600-51,614 \mathrm{mм}$
Шероховатость поверхности отверстия малой головки (Rz)	0,005 мм
Диаметр отверстия малой головки	$32,500-32,525 \mathrm{mм}$
Внутренний диаметр втулки малой головки	$30,018-30,024$ мм
Наружный диаметр втулки малой головки	$32,575-32,600$ мм
Размер между центрами большой и малой головки	$148,970-149,030$ мм
Допустимое скручивание (в параллельных плоскостях) оси от- верстия шатунного подшипника к оси отверстия втулки головки шатуна, отнесенное к длине 100 мм	0,100 мм
Допустимое отклонение параллельности осей отверстия шатун- ного подшипника к отверстию втулки головки шатуна, отнесен- ное к длине 100 мм	0,045 мм
Зазор посадки поршневого пальца в шатуне	$0,018-0,024$ мм
Допустимая разница по весу шатунов в сборе внутри двигателя	2 г
Размер резьбы винтов крышки шатунного подшипника	м8х 1 мм

Соединение поршней с шатунами и установка в блок цилиндров

Соединение поршней с шатунами производится при помощи поршневых пальцев.
Поршневые пальцы (6), установленные на место, фиксируются пружинными стопорными кольцами размером 30×2 мм. При этом разъем стопорного кольца должен быть направлен вверх.

При сборке стрелка, нанесенная на поршне (4) сверху, должна быть направлена в сторону ГРМ.
Также следует обратить внимание на взаимную ориентацию поршня и шатуна (для этого при разборке должны быть нанесены метки).

Вкладыши шатунных подшипников коленчатого вала. Сопоставление с размерами шеек шатунных подшипников коленчатого вала

	Категория детали	Размер	Код по каталогу запасных частей
Комплект вкладышей шатунных подшипников: внутренний диаметр подшипника при установленных вкладышах и затянутых винтах	Стандартный размер	48, 00 mM	A 6110300060
	Ремонтный размер №1	47, 75 mm	A 6110300160
	Ремонтный размер №2	47, 50 mm	A611030 0260
	Ремонтный размер №3	47, 25 mm	A611030 0360
	Ремонтный размер №4	47, 00 mm	A611030 0460
Шейки шатунных подшипников коленчатого вала	Стандартный размер	47,940-47,965 mm	
	Ремонтный размер №1	47,700-47,715 мM	
	Ремонтный размер №2	47,450-47,465 мM	
	Ремонтный размер №3	47,200-47,215 Mm	
	Ремонтный размер №4	46,950-46,964 мм	

Примечание: цифра 611 в номере детали означает, что в двигателе применена деталь, разработанная для двигателя OM611.

Проверка винтов крепления крышек шатунных подшипников

Перед установкой винты крепления крышек шатунных подшипников (резьба M8 x 1) следует проверить на отсутствие чрезмерного удлинения. Винты, оказавшиеся длиннее максимально допустимой величины, подлежат замене новыми.
Длина нового винта: $47 \pm 0,3$ мм.
Максимально допустимая длина: 48 мм.

Длина (L) нового $47 \pm 0,3$ мм
Максимальная допустимая длина: 48 мм
Резьба: М 8×1
VN 2.088

Затяжка винтов крепления крышек шатунных подшипников

Перед установкой на резьбу и контактные поверхности головок винтов следует нанести тонкий слой моторного масла.
Начальная затяжка после отламывания (в оригинале: At initial tightening torque after cracking): $5 \mathrm{Hm}+25 \mathrm{Hm}+180^{\circ}$.
Последующие случаи затяжки (в оригинале: For subsequent tightening): $5 \mathrm{Hm}+25 \mathrm{Hm}$ $+90^{\circ}$.

Примечание: информация о начальном моменте затяжки приведена в материалах производителя, что может означать возможность применения шатунов, изготовленных по технологии, описанной ниже.
Первичная затяжка винтов после отламывания крышки от заготовки шатуна производится увеличенным моментом затяжки. Скорее всего, речь идет о современном способе изготовления шатунов, при котором шатун и крышка изготавливаются и обрабатываются, как одна деталь. Затем по специальной технологии крышка отламы-

вается от шатуна. При этом появляется уникальная поверхность излома, характерная только для этой пары деталей (прим. ред.).

Измерение выступания поршня над плоскостью разъема нового блока цилиндров

После замены поршней, шатунов и обработки верхней плоскости блока цилиндров следует измерить величину выступания поршня над блоком цилиндров. В зависимости от этого значения подбирается прокладка головки блока цилиндров.
Измерение выступания поршня над плоскостью разъема нового блока цилиндров производится в точках, обозначенных стрелками на рис. VN 2.090.

a. Выступание поршня над плоскостью разъема нового блока цилиндров: $0,38-0,62$ мм

VN 2.091

Передняя крышка блока цилиндров

VN 2.092

Указания по нанесению герметика на переднюю крышку блока цилиндров

Линия нанесения герметика на крышку картера ГРМ. Напорные масляные каналы к блоку цилиндров двигателя нельзя уплотнять, так как в противном случае герметик в этих местах захватывается потоком масла и закупоривает отверстия для подачи масла.
Внимание: уплотняемая поверхность должна бытьполностью очищена. Герметик разрешается наносить только вдоль обоз-

наченных линий в форме валика толщиной 2,0 мм ($\pm 0,5$) мм.
Валик герметика нельзя размазывать.
Крышку картера ГРМ нужно установить в течение 10 минут после нанесения валика герметика.

Линия нанесения герметика на крышку картера ГРМ

VN 2.093

Установка масляного насоса

1. Башмак натяжного устройства
2. Lепь привода масляного насоса
3. Звездочка привода масляного насоса

4. Масляный насос
5. Винты
6. Уплотнительное кольцо

Установка задней крышки блока цилиндров

VN 2.094

Установка маховика

Установка поддона
масляного картера

1. Отверстия для винтов М 6×20 (9 Hm) 2. Отверстия для винтов М6 $\times 35(9 \mathrm{HM})$ 3. Отверстия для винтов $М 6 \times 85(9 \mathrm{HM})$ 4. Отверстия для винтов M8 $\times 40$ (20 HM)

VN 2.097

Нанесение силиконового герметика на поддон масляного картера

Герметик наносится по линии, обозначенной на рисунке буквой \mathbf{F} в виде полосы размером $2,0 \times 0,5$ мм.

Шкив коленчатого вала

1. Винт крепления шкива коленчатого вала
2. Шайба
3. Шкив коленчатого вала с гасителем крутильных колебаний

VN 2.099

Система смазки

Основными элементами системы смазки являются следующие.

- Поддон масляного картера, в котором содержится запас масла, предназначенного для смазки двигателя.
-Масляный насос смаслоприемником, расположенный в поддоне масляного картера.
- Внутренние масляные магистральные каналы, расположенные в блоке цилиндров, в передней крышке блока цилиндров.
- Масляный фильтр, имеющий жесткий корпус и сменные фильтрующие элементы.
- Теплообменник, осуществляющий передачу тепла между маслом и охлаждающей жидкостью системы охлаждения.
- Подающий и возвратный маслопроводы смазки подшипников турбонагнетателя.
Подача масла к турбонагнетателю осуществляется из ГБL. Возвращается масло в поддон масляного картера.

Масляный насос

1. Масляный насос (А646 18014 01)
2. Уплотнительное кольцо соединения масляного насоса с блоком цилиндров
3. Винт крепления масляного насоса к блоку цилиндров (3 штуки)
4. Цепь привода масляного насоса
5. Замыкающее звено цепи
6. Башмак натяжного устройства
7. Пружина натяжного устройства
8. Ось башмака натяжного устройства
9. Уплотнительное кольцо маслоприемника
10. Маслоприемник
11. Винт крепления маслоприемника к масляному насосу M6 x 19
12. Гайка M6

VN 2.100

Поддон масляного картера

1. Поддон масляного картера
2. Спивная пробка
3. Уплотнительное кольцо спивной пробки
4. Прокладка поддона масляного картера
5. Винт крепления поддона к блоку цилиндров M8 $\times 40$
6. Винт крепления поддона к блоку цилиндров M6 $\times 35$
7. Винт крепления поддона к блоку цилиндров
8. Винт крепления поддона к блоку цилиндров M6 $\times 20$
9. Винт крепления поддона к передней крышке блока цилиндров М6 $\times 20$
10. Заглушка технологического лючка (доступа к маховику)
11. Направляющая трубка масляного щупа
12. Винт крепления направляющей трубки масляного щупа к ГБЦ М6 x 16
13. Хомут крепления направляющей трубки
14. Кронштейн крепления направляющей трубки масляного щупа к ГБЦ
15. Масляный щуп
16. Уплотнительное кольцо
17. Нижняя часть маслозаливной трубки
18. Винт крепления нижней части маслозаливной трубки M6 x 15
19. Хомут $15-25$ мм
20. Винт крепления маслозаливной трубки к левому кронштейну крепления силового агрегата M6 $\times 23$
21. Винт крепления маслозаливной горловины к кронштейну M6 $\times 12$

Масляный фильтр и теплообменник

1. Передняя крышка блока цилиндров 2. Масляный фильтр (3 модификации)
2. Фильтрующий элемент
3. Теплообменник масло - ОЖ
4. Прокладка, уплотняющая соединение теплообменника с передней крышкой блока цилиндров
5. Винт крепления теплообменника к передней крышке блока цилиндров M6 x 15

$$
\text { VN } 2.102
$$

Подающий и возвратный маслопроводы

Элементы системы охлаждения

Циркуляционный насос охлаждающей жидкости и термостат

Радиатор

	1. Радиатор 2. Винт слива ОЖ 3. Шайба 4. Верхняя облицовка 5. Пружина 6. Левый и правый кронштейны 7. Левый и правый кронштейны 8. Кронштейн 9. Винт M5 $\times 16$ мм 10. Расширительный бачок 11. Пробка расширительного бачка 12. Датчик уровня ОЖ 13. Кронштейн расширительного бачка 14. Гайка M6 15. Шайба 16. Конденсор кондиционера 17. Осушитель 18. Фиксирующее кольцо конденсора 19. Датчик высокого давления 20. Винт 21. Облицовка конденсора VN 2.105

Вентилятор системы охлаждения

	1. Кожух вентилятора 2. Верхняя панель 3. Левая и правая передние облицовки 4. Правая облицовка 5. Кожух вентилятора 6. Втулка 7. Вентилятор 8. Защита вентилятора 9. Гайка M6 10. Защитная решетка 11. Жгут проводов 12. Реле вентилятора 13. Кронштейн 14. Кронштейн 15. Винт-саморез крепления решетки радиатора 5×16 мм VN 2.106

Соединительные шланги и патрубки

Система подачи воздуха

Функциональная схема системы подачи воздуха

Назначение

Система подачи давления наддува предназначена для приведения количества подаваемого в цилиндры воздуха в соответствие с требуемой в данный момент мощностью и свнешними условиями.
Регулирование давления наддува производится при помощи заслонки, начиная с частоты вращения двигателя примерно 2000 об/мин в зависимости от нагрузки на двигатель и от частоты вращения двигателя путем ее открытия в обводной линии турбонагнетателя. До достижения частоты вращения 2000 об/мин регулирующая заслонка закрыта (давление наддува еще недостаточно).

Функционирование

Отработавшие газы через выпускной коллектор направляются в корпус турбины на турбинное колесо. Энергия потока отработавших газов приводит турбинное колесо во вращение. На одном валу с турбинным колесом находится колесо турбины нагнетателя, который, вращаясь, создает поток воздуха, направляемый под давлением в цилиндры двигателя. Максимальная частота вращения турбины (в условиях высокогорья) может достигать 18000 об/мин.
Регулирование давления наддува производится различными способами.
По первому способу при помощи управля-

Турбонагнетатель

Назначение

Подача в цилиндры двигателя дополнительного количества воздуха с использованием энергии отработавших газов.

Управление давлением наддува

 турбонагнетателя с постоянной геометрией газовой турбиныУправление давлением наддува производится в зависимости от показаний датчика давления наддува по алгоритму, имеющемуся в блоке управления.
Вакуумный преобразователь, управляемый блоком управления, подает управляющий вакуум в вакуумную камеру (1) (см. рис. VN 2.109), которая посредством тяги управляет положением заслонки перепускного отверстия (13).
Когда заслонка перепускного отверстия открыта, двигатель работает в режиме естественного всасывания. При закрытии заслонки весь объем отработавших газов направляется к турбинному колесу (6), и турбонагнетатель работает в режиме полной мощности.

емой заслонки регулируется пропускная способность обводного отверстия, направляющего отработавшие газы в обход турбины, таким образом, уменьшая ее производительность.
По второму способу регулируется направление и интенсивность потока газов непосредственно перед лопатками турбинного колеса. На рис. VN 2.110 видно, как при изменении угла установки направляющих лопаток изменяются проходное сечение зазора между лопатками и угол, под которым поток газов направляется к каждой лопатке турбинного колеса.
Преимуществами турбонагнетателя с изменяемой геометрией направляющего аппа-

рата турбины являются:

- повышение давления наддува, особенно в области малых значений частоты вращения двигателя;
- повышение крутящего момента как результат улучшения наполнения цилиндров;
- снижение вредных выбросов в составе отработавших газов как результат увеличения количества воздуха, подаваемого в цилиндры;
- увеличение мощности двигателя как результат более высокого давления наддува в сочетании с уменьшением противодавления отработавших газов.

Управление давлением наддува в турбонагнетателе с изменяемой геометрией газовой турбины
Другая, более совершенная конструкция турбонагнетателя предусматривает регулирование частоты вращения турбонагнетателя путем изменения угла установки неподвижных лопаток (12) направляющего аппарата газовой турбины. Все поворотные лопатки связаны одним кольцом (10), при вращении которого лопатки синхронно поворачиваются. На рис. VN 2.110 показано, что при изменении угла установки лопаток изменяются зазоры (13) и (14) между ними, через которые поток газов подается к турбинному колесу.
Привод синхронизирующего кольца осуществляется от вакуумной камеры (17) посредством механической тяги управления (8).

1. Вход компрессора (наружный воздух)
2. Выход компрессора (нагнетаемый воздух)
3. Подача отработавших газов к турбинному колесу
4. Выход отработавших газов
5. Корпус турбины
6. Турбинное колесо
7. Корпус компрессора (нагнетателя)
8. Тяга управления
9. Приводной рычаг синхронизирующего

кольца
10. Синхронизирующее (регулирующее) копьцо
11. Поворотный рычаг лопатки направляющего аппарата
12. Лопатка направляющего аппарата
13. Воздушный зазор в положении лопаток «закрыто»
14. Воздушный зазор в положении лопаток "открыто»
15. Направляющие лопатки "закрыты»
16. Направляющие лопатки "открыты»
17. Вакуумная камера управления давлением наддува

VN 2.110

Снятие установка турбонагнетателя

Моменты затяжки резьбовых соединений

Крепление фланцевого соединения выпускного трубопровода к турбонагнетателю - 30 Нм.
Болты крепления масляного трубопровода выход к турбонагнетателю - 9 Нм.
Болты крепления трубопровода подачи масла к турбонагнетателю - $\mathbf{1 8}$ Нм.
Болты крепления кронштейна к турбонагнетателю - 30 Нм.
Болты крепления кронштейна турбонагнетателя к двигателю - 20 Нм.

Снятие и установка промежуточного охладителя

Элементы системы подачи воздуха

На рисунках этого подраздела изображены элементы системы подачи воздуха. В подписях к рисункам указаны варианты (коды) комплектации двигателей, если данный элемент применяется только в таком варианте комплектации.

4. Винт крепления турбонагнетателя к выпускному коллектору
5. Кронштейн турбонагнетателя (MS3/MS4)
6. Винт крепления турбонагнетателя (N63)
7. Амортизатор (N62/N63)
8. Кронштейн крепления воздуховода к генератору (N62/N63)
9. Винт крепления кронштейна M6 $\times 16$ мм (N62/N63)
10. Переходной шланг соединения выходного воздуховода с турбонагнетателем (N62/N63)
11. Хомут 50-70/9 мм (N62/N63)
12. Винт крепления кронштейна к двигателю M8 $\times 80$
13. Винт крепления кронштейна к двигателю M8 $\times 20$

VN 2.114

Примечание: возможна комплектация с приводом (поз. 7) или без него (привод устанавливается на автомобилях с кодом комплектации MF4).

Система подачи топлива и впрыска

Контур низкого давления

Топливо в контуре низкого давления подается из бака через фильтр к топливному насосу высокого давления.
Подача топлива в контуре низкого давления осуществляется при помощи электрического топливного насоса (5), встроенного в из-мерительно-насосный блок, установленный в топливном баке.
Ограничительный клапан, встроенный в ТНВД, поддерживает давление на уровне от 0,4 до 0,5 МПа (от 4,0 до 5,0 бар).

Контур высокого давления

В контуре высокого давления топливо подается к топливному коллектору высокого давления (далее - ТКВД), откуда при помощи трубок высокого давления подается к каждой форсунке отдельно.

1. Трубка высокого давления, подающая топливо к ТКВД
2. TKBA
3. Топливные трубки высокого давления,

подающие топливо из ТКВД к форсункам
4. Датчик давления топлива в ТКВД
5. THBA
6. Клапан регулирования давления в ТКВД
7. Топливная форсунка 1 -го цилиндра
8. Топливная форсунка 1 -го цилиндра
9. Топливная форсунка 1-го цилиндра
10. Топливная форсунка 1 -го цилиндра
11. Клапан регулирования количества подаваемого топлива VN 2.119

Топливный насос высокого давления

Назначение

Создание и поддержание в топливном коллекторе высокого давления, необходимого давления топлива (от 20 до $135 \mathrm{MПа}$ (от 200 до 1350 бар).

Размещение

ТНВД размещен на передней крышке головки блока цилиндров.

Конструкция

ТНВД представляет собой трехплунжерный насос кулачкового типа с радиальным расположением плунжерных пар по звездообразной схеме. ТНВД приводится во вращение с частотой примерно в 1,3 раза выше, чем частота вращения распределительного вала.

Функционирование

Контур низкого давления
Топливо поступает из топливоподкачивающего насоса через входной канал (6) к дроссельному клапану (13). Возможные остатки воздуха, находившиеся в топливе, увлекаются потоком топлива, направляемым через дроссельное отверстие (14) в полость возвратного потока (16). При давлении свыше $0,04 \mathrm{MПа}$ (0,4 бар) поршень клапана (13) смещается, открывая доступ топливу в кольцевой канал подачи топлива к плунжерам (9).

Эксцентриковый вал (5) с эксцентриковым кулачком (4) толкает плунжеры (9) трех насосных элементов. Возврат плунжеров производится при помощи пружин (10). Утечки топлива через плунжерные пары собираются в возвратной полости.

Контур высокого давления

a. Наполнение цилиндра

Плунжер (9) под действием возвратной пружины (10) движется по направлению к эксцентриковому валу. Топливо от топливоподкачивающего насоса подается через кольцевой канал низкого давления (6), клапанный диск (7) и клапанную пру-

b. Создание высокого давления

жину (8) в полость напорного цилиндра. Шариковый клапан (15) предотвращает обратное перетекание топлива из канала высокого давления (3) в полость низкого давления.

Плунжер (9), толкаемый эксцентриковым кулачком (5), вытесняет топливо в канал высокого давления (3) через шариковый клапан (15). При этом нагнетаемый объем топлива отсекается от полости низкого давления (6) при помощи клапанного диска (6).

Привод ТНВД

Снятие и установка

1. Снимите крышку клапанного механизма (10).
2. Установите поршень цилиндра номер (1) B BMT.
Внимание! Двигатель следует вращать за коленчатый вал в направлении часовой стрелки. Не вращайте двыгатель за распределительный вал, также не вращайте двигатель в обратном направлении.
3. Зафиксируйте распределительный вал впускных клапанов (12) при помощи фиксатора (14) (отверстие А на крышке подшипника №1 распределительного вала впускныхклапанов).
4. Снимите переднюю крышку (9) головки блока цилиндров.
5. Открутите вал привода (13) распределительного вала впускных клапанов (1), снимите успокоитель (8) приводной цепи.
6. Снимите насос высокого давления (4).
7. Пометьте положение цепного колеса (5) относительно цепи.
8. Отсоедините цепное колесо (5) привода распределительного вала (11) выпускных клапанов и снимите его совместно с цепью. Вал удерживайте ключом. При установке замените винты (7).
9. Открутите винт (3) крепления колеса зубчатого привода (1) к топливному насосу высокого давления (4).

10. Извлеките промежуточное цепное колесо привода насоса высокого давления совместно с втулкой (2).
11. Установкупроизводите в обратном порядке. Проверьтеположение распределительных валов, при необходимости отрегулируйте.

Моменты затяжки резьбовых соединений

Винт крепления цепного колеса к pacnpeделительному валу выпускных клапанов 18 Нм.

Болт крепления шестерни промежуточной насоса высокого давления к головке блока цилиндров - 9 Нм.

Крепление вала привода топливоподкачивающего насоса к распределительному валу впускных клапанов - 50 Нм.

Топливный коллектор высокого давления (ТКВД)

Назначение

ТКВД предназначен для аккумулирования топлива под высоким давлением, развиваемым ТНВД, распределения топлива в форсунки и поддержания требуемого давления топлива при помощи датчика давления (5)и клапана (6), регулирующего давления. Процесс регулирования давления управляется при помощи блока управления двигателем. Для двигателя OM611 приблизительный объем ТКВД равен $35 \mathrm{~cm}^{3}$.

Конструкция

Моменты затяжки резьбовых соединений

Гайка крепления трубопровода высокого давления к насосу высокого давления и ТКВД - 22 Hм.

Винт крепления ТКВД к головке блока цилиндров - 14 Нм.

Топливопроводы высокого давления

Снятие и установка

1. Открутите гайки крепления трубопроводов высокого давления на форсунке и распределителе, удерживая резьбовые вставки форсунок от проворачивания. При установке не превышайте усилий затяжки, чтобы избежать ослабления затяжки вставок при следующей разборке.
2. Снимите трубопроводы высокого давления. Не следует скручивать и перегибать трубопроводы. После снятия трубопроводов нужно защитить их от внутреннего загрязнения. При установке правильно расположите трубопроводы, проверьте состояние уплотняющих конусов, при наличии повреждений поверхности и/или пережимов трубопроводы необходимо заменить. Ослабьте крепление распределителя и не затягивайте полностью до закрепления трубопроводов высокого давления.
3. Установку производите в обратном порядке.
4. Проверьте топливную систему на утечки с кратковременным запуском двигателя.

Моменты затяжки резьбовых соединений

Гайки крепления трубопровода высокого давления к форсунке, распределителю затягиваются в два этапа: $22 \mathrm{Hm}+$ 25 Нм.

Клапан регулирования давления в ТКВД

Назначение

Клапан регулирования давления в TKBД (Y74) поддерживает давление на уровне, задаваемом блоком управления двигателем (A53).

Размещение

Клапан регулирования давления в ТКВД крепится при помощи резьбы в заднем торце ТКВД (см. рис. VN 2.119 поз. 6 и 2).

Конструкция

1. Вход топлива под высоким давлением
2. Отверстия сброса топлива в линию возврата
3. Клапан регулирования давления в TKBД (Y74)

VN 2.126

Функционирование

Принцип действия показан на рис. VN 2.127.

Клапан регулирования давления в ТКВД.
Принцип действия

1. Вход топлива
2. Соленоид

a. Усилие, развиваемое соленоидом
b. Усилие, развиваемое пружиной
c. Седло шарикового клапана

VN 2.127

Топливные форсунки

Назначение

Форсунки предназначены для впрыскивания в камеру сгорания распыленного топлива с наиболее выгодной формой «факела» распыления.

Размещение

Форсунки расположены в головке блока цилиндров и соединяются с топливным коллектором высокого давления при помощи трубок высокого давления.

Конструкция

Функционирование

1. Электрическое питание на соленоид не подано, впрыска нет.

Давление в канале подачи в (38) высокого

давления примерно равно атмосферному давлению. Шариковый клапан (12) заперт усилием пружины (33), воздействующей на сердечник соленоида (26).

Примечание: пружина распылителя (23) удерживает иглу (18) в положении запирания распылителя при разности давлений в верхней и нижней камерах не более 40 бар (4МПа).
2. Электрическое питание на соленоид не подано, высокое давление есть, впрыска нет.

В этой фазе функционирования форсунки давление из ТКВД подается через питающий канал в нижнюю камеру, а также через дроссельное отверстие в верхнюю камеру. Давление топлива в верхней и нижней камерах уравновешено. Возвратная пружина иглы распылителя удерживает иглу в положении закрытия клапана распылителя. Впрыска нет.
3. Начало впрыскивания (электромагнитный клапан открыт, питание на форсунку подано).
При подаче напряжения на обмотку электромагнитного клапана (6) сердечник соленоида (26) втягивается, сжимая пружину (33). При этом открывается шариковый клапан (12) и топливо из верхней камеры (39) через дроссельное отверстие (37) канала сброса давления перетекает в контур возврата топлива. Давление в верхней (уравновешивающей) камере снижается. Неуравновешенное давление топлива в нижней камере создает усилие, поднимающее иглу.
4. Впрыскивание (электромагнитный клапан открыт, питание на форсунку подано).

Во время удержания шарикового клапана (12) в открытом состоянии неуравновешенное давление в камере (43) удерживает иглу распылителя (18) в открытом состоянии. Разность давлений в верхней (39) и нижней (43) камерах обеспечивается соотношением значений пропускной способности дроссельных отверстий (36) и (37).
5. Окончание впрыскивания (электромагнитный клапан закрыт).

При снятии электрического питания с обмотки соленоида клапан закрывается. При этом давление в верхней камере восстанавливается до значения, равного значению давления в нижней камере. Усилие возвратной пружины (23) закрывает клапан распылителя.

1. Топливопровод высокого давления
2. Электрический разъем
3. Фиксатор трубки возврата топлива
4. Трубка возврата топлива
5. Винт крепления прижима форсунки
6. Прижим
7. Захват ударного съемника
8. Груз ударного съемника
9. Направляющий стержень (винт) ударного съемника
10. Датчик положения распределительного вала ($B 6 / 1, B 6 / 17$)
11. Форсунка (Y76)
12. Резьбовой переходник

VA 2.130

Снятие и установка

1. Снимите прижим (6).

2. Извлеките форсунки (11). Если форсунки не вынимаются, установите захват (7) на место прижима (6) и при помощи ударного съемника (8) и (9) извлеките форсунки (11) вместе с уплотнительным кольцом.
3. Очистите форсунки и отверстия форсунок при помощи латунных щеток подходящих размеров, форсунки смажьте специальной смазкой, отверстия продуйте и защитите от загрязнения, предварительно вставив залтушки.
Внимание: снятие форсунок на двигателях 646.980 и 646.981 отличается от описанного выше (для двигателей 646.982 и 646.983) тем, что вместо захвата (7) используется резьбовой переходник (12).
4. Установку производите в обратном порядке. При установке форсунок для предотвращения появления излишних напряжений в трубопроводах высокого давления следует установить их (трубопроводы) на форсункидо окончательной затяжки крепления форсунок.
5. Проверьте топливную систему на утечки с кратковременным запуском двигателя.

Моменты затяжки резьбовых соединений

Винт крепления прижима форсунки $7 \mathrm{Hm}+90^{\circ}$.

Штуцер крепления трубки высокого давления к топливной форсунке

Снятие и установка

1. Снимите форсунку.
2. Установите колпачки защитные $(4,5)$ на распылитель форсунки и штуцер топливной системы для предохранения от загрязнений и повреждений.
3. Очистите форсунку (1) чистящим раствором и продуйте насухо. Допускается чистка в ультразвуковой ванне.
4. Удалите грязь в месте присоединения топливного трубопровода высокого давления (2) латунной щеткой и продуйте сжатым воздухом. Не повредите поверхность распылителя форсунки.
5. Приспособление для сборки установите в тиски и зажмите в нем форсунку (1).
6. Открутите штуцер (2) и шайбу (3), штуцер и шайбу замените.
7. Нанесите тонкий слой универсальной смазки на поверхность нового штуцера и шайбы и установите на место.
8. Соединение затяните.
9. Пометьте штуцер белым цветом. Не допускается производить замену штуцера второй раз. При наличии утечек топлива замените форсунку.
10. Установите форсунку.

Моменты затяжки резьбовых соединений

Штуцер трубопровода высокого давления к форсунке - 42 Нм.

Снятие и установка штуцера крепления трубки высокого давления к топливной форсунке

1. Форсунка
2. Штуцер
3. Шайба уплотняющая
4. Колпачок защитный
5. Колпачок защитный
6. Приспособление для сборки

Система выпуска отработавших газов

Ниже представлены элементы системы выпуска ОГ для автомобилей с различным уровнем комплектации. Основной признак деления с точки зрения конструкции системы выпуска ОГ: наличие или отсутствие сажевого фильтра.

Система выпуска отработавших газов к семейству двигателей ОМ646, оснащенных сажевым фильтром

Система выпуска отработавших газов к семейству двигателей ОМ646, не оснащенных сажевым фильтром

3. СЦЕПЛЕНИЕ

Сцепление предназначено для передачи крутящего момента от двигателя к КПП.
Механизм сцепления описываемого автомобиля является традиционной однодисковой муфтой сухого трения с нажимной пружиной мембранного типа.
На рис. VN 3.001 изображены основные элементы механизма сцепления.

Управление механизмом сцепления
Стандартной конструкцией сцепления для всех типов двигателей данного автомобиля с двойным маховиком (TMF) является наличие автоматической регулировки мембранной пружины.

При установке нового нажимного механизма (или при установке другого бывшего в употреблении механизма) следует установить кольцо автоматической регулировки мембранной пружины (регулировки зазора в приводе выключения) в начальное положение (см. ниже).
Обычный привод выключения сцепления, включавший в себя выносной рабочий цилиндр сцепления и рычаг привода выключения, в данной модели заменен гидравлическим цилиндром, установленным соосно с первичным валом КПП.

Модели, на которых установлена автоматизированная КПП, оснащены датчиком хода выжимного подпятника.

Принцип действия гидравлического привода выключения сцепления

Гидравлический поршень (7) с закрепленным на нем выжимным подпятником под действием давления движется вперед по втулке (8) и нажимает на лепестки мембранной пружины сцепления. См. рис. VN 3.006 .
Уплотнение поршня осуществляется при помощи манжеты (6).

Пружина (5) обеспечивает постоянное касание выжимного подпятника и лепестков мембранной пружины с малым усилием.
Для защиты от загрязнений установлен пыльник (4).

Система автоматического привода выключения сцепления

Выключение сцепления

Блок управления автоматизированной КПП (N15/6) подает управляющий сигнал на клапан (4) в блоке клапанов (В). Клапан открывает подачу давления (5) в гидравлический цилиндр, поршень которого, двигаясь вперед, нажимает наружным кольцом выжимного подпятника на лепестки мембранной пружины сцепления.

А. Гидравлический цилиндр привода выключения сцепления
В. Блок клапанов

1. Камера гидравлического цилиндра
2. Пружина
3. Поршень
4. Электромагнитный клапан
5. Управляющее давление

Включение сцепления

При необходимости включить сцепление блок управления снимает питание с управляющего электромагнитного клапана (4), через который жидкость перетекает из гидравлического цилиндра в резервуар (6).

A. Гидравлический цилиндр привода выключения сцепления
B. Блок клапанов

1. Камера гидравлического цилиндра
2. Пружина
3. Поршень
4. Электромагнитный клапан
5. Возвратный поток жидкости

VN 3.008

Привод выключения сцепления при помощи педали

1. Главный цилиндр сцепления
2. Питающий шланг
3. Напорная трубка
4. Пыльник
5. Установочные зажимы напорной трубки
6. Винт M6×16 мм
7. Кронштейн напорной трубки
8. Винт М 6×15 мм
9. Установочные зажимы питающего шланга

VN 3.009

Проверка деталей сцепления при ремонте

Проверка выжимного подпятника

Выжимной подпятник может быть заменен в следующих случаях:

- после перегрева подшипника;
- в случае неровного вращения (от руки) или повышенного шума подпятника.

Проверка нажимного механизма

Эта проверка состоит в детальном осмотре поверхности трения нажимной плиты (1) на наличие трещин, сколов, глубоких следов износа. Пружина проверяется на отсутствие трещин и сколов на лепестках (показано стрелкой).

VN 3.010

Наружная часть лепестков пружины проверяется на наличие износа в месте контакта с выжимным подпятником (показано стрелками). Также следует обращать внимание на то, чтобы все лепестки пружины имели одинаковый угол подъема.

Проверка ведомого диска

Проверка ведомого диска заключается в проверке фрикционных накладок (1) на отсутствие чрезмерного износа, а также механических и термических повреждений.
Кроме того, проверяются демпферные пружины (2) на отсутствие износа и поломок.
Следующей проверкой ведомого диска является проверка состояния шлицевой ступицы (3) диска.
.

Возврат в начальное положение

 кольца автоматической регулировки зазора между выжимным подпятником и лепестками мембранной пружиныУстановите снятый с двигателя нажимной механизм сцепления на основание (5).
При помощи пресса (7) с оправкой (6) осторожно нажмите на лепестки мембранной пружины (1) так, чтобы освободилось кольцо (2) автоматической регулировки зазора.
При помощи отвертки поверните кольцо (2) против часовой стрелки так, чтобы оно установилось в положение (A).
После окончательной сборки нажмите на педаль сцепления как минимум 5 раз для того, чтобы регулировочное кольцо установилось в рабочее положение.

Снятие соосного рабочего цилиндра сцепления

Рабочий цилиндр сцепления крепится к корпусу КПП (1) при помощи четырех винтов (3).

Снятие и установка педали сцепления

Для снятия педали сцепления следует снять фиксатор (2) и извлечь ось педали (3).
Затем, сняв фиксатор (4), извлечь ось (8) вилки штока (7) главного цилиндра сцепления.

Кронштейн педали сцепления

4. ТРАНСМИССИЯ

Основная базовая схема компоновки автомобиля - классическая с продольным размещением двигателя в блоке с КПП и приводом на задние колеса.
Возможны полноприводные версии автомобиля. В этом случае на автомобиль дополнительно устанавливаются раздаточная коробка, продольный вал переднего привода, редуктор переднего привода с осевым дифференциалом и приводные валы передних колес.

На рисунке показана трансмиссия полноприводного автомобиля. Коробка передач не показана.

Передаточные числа коробок перемены передач

Передача	Передаточные числа МКпп типа NSG 250, устанавли- ваемой на автомобили с кодом комплектации MC1 (дизельный двигатель ОМ646, 65 кВт (88 л.с.) при 3800 об/мин)	Передаточные числа МКпП типа NSG З70, устанавливаемой на автомоби- ли с кодом комплектации МС2 (ди- зельный двигатель ОМ 646, 80 кВт (109 л.с.) при 3800 об/мин) или МС3 (дизельный двигатель 646, 110 кВт (136 л.с.) при 3800 об/мин)
1	4,988	5,014
2	2,816	2,831
3	1,780	1,789
4	1,249	1,256
5	1,000	1,000
6	0,823	0,797
R	4,544	4,569

Номер узла по каталогу запасных частей	Передаточное число	Код комплектации, обозначающий применение данного редуктора	Комбинации кодов комплектации, обозначающих двигатель и Кпп, совместно с которыми используется данный редуктор
A639 3501114	$\mathrm{l}=4.091$	-	GDO+MC1

Примечание: код комплектации G40 соответствует применению АКПП.

Механическая коробка перемены передач типа 716.6

Новая механическая КПП 716.6 является полностью синхронизированной двухвальной коробкой перемены передач с шестью передними и одной задней передачами.

Гидравлический блок управления

Механические Kпп типа $\mathbf{7 1 6 . 6}$ могут быть оснащены как механическим тросовым управлением, так и полуавтоматическим гидравлическим управлением. Во втором случае КПП оснащается автономным насосом гидропривода переключения передач, масляным бачком и гидравлическим блоком, состоящим из системы клапанов и гидравлических цилиндров, развивающих усилие переключения передач. При этом управление сцеплением производится также автоматически по сигналам из блока управления КПП, и давление в рабочий цилиндр сцепления подается не из главного цилиндра, а из гидравлической системы управления КПП.

1. Соосный механизм выключения сцепления с датчиком положения выжимного подпятника
2. Жгут электропроводки системы управления КПП
3. Датчик положения центрального штока переключения передач
4. Вентиляция масляного резервуара
5. Гидравлический цилиндр
6. Датчик частоты вращения сцепления
7. Датчик давления в гидросистеме
8. Датчик скорости автомобиля
9. Аккумулятор давления
10. Масляный резервуар
11. Блок клапанов
12. Клапаны управления

гидроцилиндрами
13. Клапан управления сцеплением
14. Гидравлический насос
15. Трубка управления сцеплением
16. Центральный шток переключения передач

VN 4.003

Такие КПП имеют название Sprintshift transmission. Эти КПП заменили ранее производившуюся AKПП типа W4A028.
Следует заметить, что автоматизированные КПП не совместимы с некоторыми системами типа "старт-стоп».

Применение гидравлического привода позволяет использовать КПП как в полностью автоматическом режиме, когда водитель не принимает участия в процессе переключения передач, так и в полуавтоматическом режиме, когда выбор передачи задается водителем при помощи селектора передач. При этом процесс выключения сцепления и собственно переключения передач также происходят без участия водителя.

1. Блок клапанов
2. Гайка крепления линии подачи масла под давлением
3. Патрубок сливной линии
4. Масляный фильтр в напорном канале
5. Выход канала управления сцеплением
6. Исполнительный механизм,

поворачивающий главный вал механизма переключения передач
7. Электромагнитный клапан (Y90), управляющий подачей давления в механизм управления сцеплением
8. Электромагнитный клапан (Y91) сброса давления в гидравлическом приводе управления КПП (по достижению крайнего положения каждого из гидравлических исполнительных механизмов)
9. Электромагнитный клапан (Y92/1) включения 1 -й, $3-$ й, 5 -й передач
10. Электромагнитный клапан (Y92/2) включения $2-и ̆, ~ 4-и ̆, ~ 6-и ̆ ~ п е р е д а ч ~ и ~$ передачи заднего хода VN 4.004

Механическое переключение передач

Механизм переключения передач при помощи тросового привода унифицирован с полуавтоматическим механизмом. Разница состоит в том, что усилия к внутренним элементам механизма переключения передаются системой тяг и рычагов, к которым усилия передаются при помощи тросов от рычага переключения передач.

Снятие и установка рычага переключения передач

Снимите центральную консоль и ее облицовку.

Отсоедините электрический разъем (8) переклочателя света заднего хода.
Пои помощи подходящего инструмента рессоедините сферические шарниры тросоя управления (1) и (3) с рычагом переклюешыя передач (5).
Симите рычаг переключения передач (5) с сонштейном с траверсы, расположенной асакомбинацией приборов.
Yсановку производите в обратной послеадвательности. После установки отрегулируйе тросы управления КПП.

3. Рукоятка рычага переключения передач
4. Механизм рычага переключения передач
5. Тросы выбора и включения передач
6. Рычаг выбора передачи
7. Кронштейн
8. Тяга выбора передачи
9. Рычаг включения передачи
10. Вилка включения задней передачи 11. Вилка вкпючения 1 -й и 2 -й передач
12. Рычаг включения 3 -й и 4 -й передач
13. Рычаг включения 5 -й и 6 -й передач

VN 4.005

1. Внешний трос управления КПП
2. Центральный трос управления КПП
3. Шаровая муфта внешнего троса управления КПП
4. Шаровая муфта центрального троса управления КПП
5. Рычаг переключения передач с кронштейном
6. Фиксирующая пластина
7. Винты
8. Электрический разъем переключателя света заднего хода (S16/2)

VN 4.008

Отсоедините тросы управления МКПП,

Разборка и сборка

 полуавтоматической КПП 716.6
Подготовительные операции

1. Отсоедините разъем гидравлического насоса.
2. Включите зажигание и производите переключение передач во всем диапазоне до полного снижения давления в системе гидропривода переключения передач.
3. Отсоедините отрицательный провод от батареи.
4. Слейте масло из гидропривода.
5. Удалите загрязнения вокруг пробки отверстия для слива масла из КПП.
6. Открутите пробку сливного отверстия (14) и слейте масло из КПП.
7. Снимите КПП.

Разборка КПП

8. Снимите направляющие штифты (16).
9. Закрепите КПП на стенде.
10. Снимите фланец (2) карданного вала.
11. Снимите датчик частоты вращения выходного вала (см. пп. 12-14).
12. Отсоедините разъем (1) датчика (рис. VN 4.011).
13. Открутите винт (2).
14. Извлеките датчик (3).
 вращения выходного вала
15. Разъем датчика частоты вращения
16. Винт
17. Датчик частоты вращения
18. Уплотнительное кольцо

VN 4.011
15. Снимите масляныйресивер (см. пп. 16-19).
16. Отсоедините вентиляционную трубку (2) (рис. VN 4.012) от вентиляционного патрубка (3).
17. Поверните вентиляционный патрубок (3) на 45° вправо и извлеките его.
18. Отсоедините разъем (5) датчика давления.
19. Снимите хомут (6).

Снятие и установка масляного ресивера:

1. Трубопровод
2. Вентиляционная трубка
3. Вентиляционный патрубок
4. Уплотнительное кольцо
5. Разъем датчика давления в гидроприводе
6. Хомут
7. Винт
8. Винт
9. Масляный ресивер

VN 4.012
20. Снимите гидравлический насос (см. пп. 21-24) (рис. VN 4.013).
21. Отсоедините разъем (1).
22. Отсоедините напорную трубку (2) от гидравлического насоса (3).
23. Открутите винты (5).
24. Отсоедините входящую трубку (4).
25. Снимите датчики угла поворота (см. пп. 26-30).
26. Отсоедините разъем (1) датчиков (рис. VN 4.014).
27. Извлеките задний правый винт (3) крепления установочной пластины датчиков.
28. Открутите винты (4).
29. Поверните датчик (5) приблизительно на 45° вправо и извлеките его.
30. Поверните датчик (6) приблизительно на 45° влево и извлеките его.
31. Снимите установочную пластину (2) датчиков угла поворота (рис. VN 4.015).

Пластина крепления датчиков угла поворота:

1. Винт
2. Пластина крепления датчиков

угла поворота
VN 4.015

Снятие и установка датчиков угла поворота

1. Разъем датчиков угпа поворота
2. Кронштейн
3. Винт
4. Винт
5. Датчик угла поворота главного вала механизма переключения
6. Датчик зубчатого колеса

VN 4.014
32. Снимите гидравлический блок (см. пп. 33-40)
33. Отсоедините напорный трубопровод от масляного ресивера (аккумулятора давления).
34. Открутите винт (3) (рис. VN 4.016) и снимите соединительную втулку (2) с главного приводного вала (1).
35. Отсоедините трубопровод (4) управления механизмом сцепления от гидравлического блока (5) (рис. VN 4.017).
36. Отсоедините разъемы (6) электромагнитных клапанов.

1. Главный приводной вал
2. Соединительная втулка
3. Винт

VN 4.016
37. Извлеките возвратный трубопровод (7) из гидравлического блока.
38. Отсоедините напорный трубопровод (8) от гидравлического блока (5).
39. Открутите винты (9) и (10) (рис. VN 4.018).
40. Приподнимите гидравлический блок при помощи рычага (осторожно) и извлеките его. Место установки рычага указано стрелкой.

\qquad

41. Отсоедините напорную трубку (11) от гидравлического блока (рис. VN 4.019).

42. Снимите масляный резервуар гидропривода (рис. VN 4.020).

43. Снимите вентиляционные трубки (6) и (7) (рис. VN 4.010).
44. Снимите вентиляционный патрубок (15) и вентиляционный коллектор (4).
45. Снимите фиксатор задней передачи (3).
46. Снимите кронштейн (8).
47. Отсоедините жгут проводов (19).
48. Снимите кронштейн (18).
49. Снимите механизм управления сцеплением (рис. VN 4.021).

50. Снимите заднюю часть корпуса КПП (рис. VN 4.022).

51. Снимите главный вал (1) механизма переключения передач (рис. VN 4.023).
52. Открутите 4 винта (2) крепления механизма переключения передач.
53. Установите монтажную пластину (7) на первичный (4) и промежуточный (5) валы.

Снятие главного вала механизма
перекпючения передач

1. Главный вал механизма переключения передач
2. Винты
3. Механизм переключения передач
4. Первичный вал КПП
5. Промежуточный вал
6. Главный вал
7. Монтажная пластина

VN 4.023
54. Снимите механизм переключения передач (3).
55. Снимите первичный вал (7), промежуточный вал (5) и главный вал (6) (рис. VN 4.024).

Разборка КПП
3. Механизм переключения передач
5. Промежуточный вал
6. Главный вал
7. Первичный вал

Сборка кпп

56. Установите главный, промежуточный валы с механизмом переключения передач.
57. Установите заднюю часть корпуса кпп.
58. Установите кронштейн (18) (рис. VN 4.010).
59. Закрепите жгут проводов (19).
60. Установите кронштейн (8).
61. Введите фиксатор (3) задней передачи в отверстие до упора.

62. Установите вентиляционные трубопроводы (15), (4), (6), (7).
63. Установите механизм выключения сцепления.
64. Установите масляный резервуар.
65. Установите гидравлический блок.
66. Установите пластину крепления датчиков угла поворота.
67. Установите датчики угла поворота (рис. VN 4.014). Для этого датчик (6), предварительно повернутый на 90°, вставьте на место и зафиксируйте его, повернув вправо. Датчик (5), предварительно повернутый на 45° вправо, вставьте на место и поверните его влево. Затяните винт (3), расположенный в правом заднем углу пластины крепления датчиков угла поворота.

Разборка и сборка передней

 части корпуса КПП
68. Соедините разъемы (1) датчиков и прикрепите их к кронштейну (4) (рис. VN 4.014).
69. Установите гидравлический насос.
70. Установите датчик частоты вращения.
71. Установите на место пробку (1) (рис. VN 4.025) отверстия для слива масла.
72. Открутите пробку масляного фильтра (2).
73. Залейте трансмиссионное масло. Уровень масла должен быть на 10 мм ниже края отверстия для заливки масла.
74. Установите пробку масляного фильтра (2).
75. Установите масляный ресивер (аккумулятор давления).
76. Установите центрующие штифты.
77. Установите КПП.

Датчик положения механизма выключения сцепления

Датчик давления в гидравлическом приводе управления КПП

Датчик давления в гидроприводе управления КПП

1. Разъем датчика давления
2. Датчик давления

$$
\text { VN } 4.028
$$

Внутренний механизм переключения передач

Механические элементы КПП

Синхронизаторы

Передачи	Синхронизаторы МКПП типа NSG 250, устанавливаемой на автомобили с кодом комплектации MC1 (двигатель ОМ646, 65 kBt (88 л.с.) при 3800 об/мин)	Синхронизаторы МКПП типа NSG 370, устанавливаемой на автомобили с кодом комплектации МС2 (двигатель OM 646, 80 кВт (109 л.с.) при 3800 об/мин) или МСЗ (двигатель 646, 110 кВт (136 л.с.) при 3800 об/мин)
2	Двухконусный	Трехконусный
1/3/4	Двухконусный	Двухконусный
5/6	Одноконусный	Одноконусный
Задний ход	Одноконусный	Одноконусный

Трехконусный синхронизирующий механизм

Трехконусный синхронизирующий механизм включения передач используется в вариантах исполнения SG-S 370 и SG-S 400. Дополнительное коническое кольцо (3), установленное между фрикционным кольцом (4) и блокировочным кольцом синхронизатора (6), а также фрикционная накладка (5), закрепленная на фрикционном кольце (4), являются главными отличительными особенностями синхронизирующего механизма такого типа.
Основное назначение - более эффективное торможение свободно вращающегося зубчатого колеса относительно муфты включения передачи с целью уравнивания угловых скоростей при включении передачи.

Двухконусный синхронизирующий механизм

Двухконусный синхронизирующий механизм включения передач используется в вариантах исполнения SG-S 250 и SG-S 270 для включения передач с 1-й по 4-ю, а также в вариантах исполнения SG-S 370 and SG-S 400 для включения 3 -й и 4-й передач. Фрикционная накладка закреплена на фрикционном кольце.

Двухконусный синхронизирующий механизм:

1. Свободно вращающееся на валу зубчатое

колесо 2-й передачи
2. Свободно вращающееся на валу зубчатое колесо 1-й передачи
3. Коническое кольцо
4. Фрикционное кольцо
5. Блокировочное кольцо синхронизатора
6. Муфта включения передач
7. Ступица муфты включения передач
8. Bar
9. Игольчатый подшипник

Одноконусный синхронизирующий механизм

Промежуточный вал

(15)

Главный вал и первичный вал

Редуктор главной передачи задней оси

Снятие и установка заднего редуктора главной передачи

Крепление редуктора главной передачи задней оси

1. Задняя траверса крепления редуктора
2. Винт крепления траверсы к кузову
3. Винт крепления редуктора к траверсе
4. Передняя реактивная штанга
5. Винт крепления передней штанги к редуктору M14 $\times 1,5 \times 50$ мм
6. Шайба
7. Шайба
8. Поглотитель вибраций
9. Винт М8 $\times 35$ мм
10. Снимите пружину задней подвески.
11. Отсоедините карданный вал (1) от редуктора главной передачи задней оси и, отведя его в сторону, закрепите к нижней части кузова. Слейте масло из редуктора главной передачи.
12. Подоприте при помощи домкрата и специальной траверсы корпус (2) редуктора главной передачи.
13. Отсоедините от кузова вентиляционный шланг (3) редуктора.
Пометьте положение корпуса (2) редуктора до снятия винтов (4).

5. Снимите винты (4).

6. Открутите передний болт реактивной тяги (5) редуктора. Пометьте положение реактивной штанги. Если предстоит замена редуктора, снимите реактивную штангу (5) полностью.
7. Опустите редуктор главной передачи (2) и слегка потяните назад. Не следует опускать редуктор слишком низко, так как при этом

MOЖHi циала
8. V UPY|
главн
нител привя
9. ECJ

траве
Yстан
дова
Cxen
штан
Mom

можно повредить подшипники дифференциала и пыльники внутренних ШРУСов.
8. Извлеките наконечники внутренних ШРУСов приводных валов (6) из редуктора главной передачи. Установите предохранительные заглушки на место извлеченных приводных валов.
9. Если редуктор подлежит замене, снимите траверсу, поддерживающую редуктор.
Установку производите в обратной последовательности.

Схема затяжки винта крепления передней штанги к редуктору: $50 \mathrm{Hm}+90^{\circ}$.

Момент затяжки винта крепления траверсы к кузову: $\mathbf{2 5} \mathbf{~ H м . ~}$

1. Карданный вал
2. Винт крепления траверсы к редуктору
3. Передняя штанга крепления редуктора
4. Приводные валы задних колес

Приводные валы

Снятие и установка карданного вала

1. Снимите карданный вал, для чего выполните следующий действия.
2. Отсоедините переднюю секцию карданного вала (1) от КПП (только для автомобилей без полного привода) (рис. VN 4.039).
3. Отсоедините заднюю секцию карданного вала (1) от фланца (3) хвостовика главной передачи задней оси.
4. Снимите подвесной подшипник (4) передней секции карданного вала.
5. Снимите подвесной подшипник (5) задней секции карданного вала.
6. Снимите карданный вал (1). Для этого снимите предохранительную скобу (6).
7. Проверьте карданные шарниры на наличие износа.
8. При сборке нанесите консистентную смазку продленного срока действия (МВ long-term grease) на шлицевые поверхности карданных валов.
9. Соедините переднюю и заднюю секции карданного вала.

Внимание: метки на соединяемых секциях приводных валов должны располагаться так, как показано на рис. VN 4.040.

Показано для автомобилей с кодом ZG2 Не отключаемый передний привод

1. Карданный вал
2. Раздаточная коробка
3. Главная передача заднего привода
4. Передний подвесной подшипник карданного вала
5. Задняя опора карданного вала
6. Предохранительная скоба

VN 4.039

Снятие и установка приводных валов колес задней оси

1. Затяните стояночный тормоз.
2. Опустите заднюю ось автомобиля (только для автомобилей с пневматическими пружинами задней подвески (код комплектации CLO).
3. Установите рынаг системы контроля уровня кузова в пассивный режим (только для автомобилей с пневматическими пружинами задней подвески (код комплектации CLO).
4. Снимите защитный колпачок задней ступицы.
5. Открутите центральную гайку крепления приводного вала в задней ступице, для чего выполните следующие действия.

Снятие гайки

5.1. Отогните вогнутые для фиксации гайки части воротника (показано стрелками на рис. VN 4.041) и открутите гайку (1). При откручивании гайки колесо должно стоять на земле. Движение автомобиля при ослабленных гайках (1) не допускается.

Установка и затяжка гайки

5.2. Затяжка гайки производится в два этапа по схеме: $165 \mathrm{Hm}+60^{\circ}$.

Внимание: для установки всегда применяйте новую гайку.

Фиксация гайки

5.3. При помощи подходящего инструмента вогните воротник (3) гайки (1) в пазы шлицевого наконечника (4) наружного ШРУСа. Фиксирующая (вогнутая) часть воротника должна плотно прилегать к поверхности паза.
5.4. Нанесите при помощи краски контрольную метку на гайку и на шлицевый наконечник.

1. Гайка
2. Приспособление для фиксации гайки
3. Воротник гайки
4. Шлицевый наконечник наружного ШРРСа
5. Отпустите стояночный тормоз.
6. Снимите колесо.
7. Снимите редуктор главной передачи задней оси.
8. Извлеките при помощи монтажной лопатки внутренний ШРУС приводного вала (1) из редуктора главной передачи (подробнее см. ниже).
9. Извлеките наружный ШРУС из ступицы заднего рычага (3).
10. Установку производите в обратной последовательности.

11. Приводной вал заднего колеса
12. Дополнительный груз приводного вала (для автомобилей с двигателем ОМ646, код MC1 или MC2)
13. Рычаг задней подвески

VN 4.042

Извлечение внутреннего ШРУСа

 приводного вала из редуктора главной передачи задней оси1. Извлечение ШРУСа (1) из редуктора (2) производите при помощи монтажной лопатки так, как показано на рисунке VN 4.043.

Показано на примере левого приводного вала задней оси

1. Kорпус ШРУСа
2. Корпус редуктора главной передачи

VN 4.043

Для установки ШРУСа в редуктор замените стопорное кольцо на шлицевом наконечнике (3) ШРУСа и установите наконечник ШРУСа в редуктор до ощутимого щелчка фиксирующего кольца.

Снятие наружного ШРУСа с приводного вала

Снятие

1. Зажмите вал в тиски при помощи защитной прокладки.
2. Снятие ШрУСа (1) производите при помощи молотка и рожкового ключа размером 32 mm .

Установка

4. Напрессуйте ШРУС на шлицевую часть приводного вала до ощутимого щелчка стопорного кольца (2).
Используйте только новое стопорное кольцо.

Снятие внутреннего ШРУСа с приводного вала

Снятие

1. Для снятии ШРУСа следует разжать пристопорное кольцо (4) (выступы стопорного кольца показаны стрелками) и одновременно снять Шрус, с упором в сферический кулак (1).
Внимание: не допускайте падения ШРУСа. При необходимости воспользуйтесь услугами помощника.

2. Сферический кулак
3. Приводной вал
4. Буртик
5. Стопорное кольцо
6. ШРУС

Стрелками показаны отогнутые выступы стопорного кольца

VN 4.047

Установка

2. Установите новое стопорное кольцо (4) в сферический кулак (1).
3. Установите ШРУС (5) на приводной вал (2) до фиксации стопорного кольца в канавке.

4. Сферический кулак
5. Приводной вал
6. Буртик
7. Стопорное кольцо
8. ШPYC
9. Канавка стопорного кольцаа

VN 4.048

Замена пыльника ШРУСа

Снятие

1. Рассоедините хомуты (1) и (2) при помощи специальных щипцов (3) (рис. VN 4.049).
2. Снимите пыльники внутреннего (6) и наружного (7) ШРУСа (рис. VN 4.050).

Установка

3. Заполните специальной консистентной смазкой новые пыльники ШрУСа (6) и (7), а также заполните той же смазкой внутренние полости ШРУСа (рис. VN 4.050).
Общее количество смазки приведено в таблице

	Количество смазки, закладываемое в Шрус	
	Для автомобилей с двигателем 646.983	Для автомобилей с двигателем 646.982
	160 r	185 r
Наружный ШРУС	145 r	145 r

4. Установите новые пыльники на приводной вал.
5. Закрепите пыльники хомутами при помощи щипцов для обжатия хомутов.

Обратите внимание на установку мест обжатия хомутов. Места обжатия обоих хомутов для наружного шарнира должны быть повернутыми относительно хомутов внутреннего шарнира на 180°. Это нужно для уверенности в том, что балансировка приводного вала не будет нарушена.

Редуктор передней оси

5. ПОДВЕСКИ КОЛЕС

Подвеска передних колес

Подвеска передних колес является однорычажной подвеской типа "Мак Ферсон". Нижний рычаг подвески выполнен треугольным в плане. Усилия торможения автомобиля воспринимаются непосредственно жестким рычагом без применения реактивных штанг.

Шаровая опора крепится к рычагу тремя заклепками. К поворотному кулаку шаровая опора крепится при помощи клеммного зажима со стяжным болтом.

Стойка амортизатора верхним концом крепится к кузову. Нижний конец стойки крепится к поворотному кулаку двумя болтами. Верхний из этих болтов является эксцентриковым болтом, предназначенным для регулировки развала колес.
Вся нижняя часть подвески смонтирована на подрамнике, который крепится к кузову.

Рычаг передней подвески

Рычаг передней подвески крепится к подрамнику при помощи двух сайлент-блоков.
К поворотному кулаку рычаг крепится при помощи шаровой опоры, которая приклепана к рычагу тремя заклепками. Палец шаровой опоры крепится кповоротному кулаку при помощи клеммного зажима.

1. Поворотный кулак
2. Болт клеммного зажима (162 Hm)
3. Рычаг
4. Болты крепления рычага к подрамнику (155 Hm)
Стрелками указаны заклепки крепления шаровой опоры к рычагу

VN 5.002

Передний рычаг и поворотный кулак

1. Поворотный кулак.
2. Болт крепления шаровой опоры k поворотному кулаку
3. Шарнир наконечника рулевой тяги
4. Эксцентриковый болт
5. Нижний болт крепления поворотного кулака к амортизатору
6. Датчик ABS (L6/1) VN 5.004

Крепление поворотного кулака к стойке амортизатора

Поворотный кулак крепится к стойке амортизатора при помощи двух болтов, верхний из которых является эксцентричным и служит для регулировки развала колес.

1. Провод датчика ABS
2. Поворотный кулак
3. Винт крепления датчика ABS
4. Наконечник рулевой тяги
5. Гайка рулевой тяги
6. Болт крепления поворотного кулака к рычагу
7. Болт
8. Болт
9. Рычаг передней подвески
10. Левый и правый датчики ABS (L6/1 и L6/2)

VN 5.005

Стабилизатор поперечной устойчивости

$\begin{array}{lll}\text { 1. Передний подрамник } & \text { 2. Кронштейн } & \text { 3. Резиновая втулка стабилизатора }\end{array}$

Моменты затяжки болтов крепления стабилизатора
M8: $\mathbf{2 0 H}+60^{\circ}$.
M10: $60 \mathrm{Hм}$.

Крепление штанги стабилизатора поперечной устойчивости
Стабилизатор поперечной устойчивости соединен со стойками амортизаторов при помощи двух штанг. На обоих концах штанги имеются два сферических шарнира.
Нижний шарнир крепится к стабилизатору при помощи гайки (2). Аналогично верхний шарнир крепится к стойке амортизатора.

1. Tяга переднего стабилизатора
2. Гайка

Стойка амортизатора

Состав стойки амортизатора и последовательность сборки показаны на рисунке VN 5.009.
$\left.\begin{array}{lll}\text { (2) (3) } & \begin{array}{l}\text { 1. Амортизатор } \\ \text { 2. Гайка }\end{array} \\ \text { 4. Шайба }\end{array}\right]$

		1. Амортизатор 2. Верхняя гайка крепления амортизатора (66 Hm) 3. Шайба 4. Резиновый вкладыш 5. Шайба 6. Защитная трубка 7. Пружина 8. Манжета пружины 9. Шток амортизатора VN 5.010

Задняя подвеска

Задняя подвеска автомобилей Vito Viano является независимой подвеской с продольными рычагами. Каждый из рычагов крепится при помощи двух сайлент-блоков к кронштейнам, расположенным на кузове.
Упругим элементом задней подвески может быть как металлическая спиральная пружина, так и пневматическая подушка, являющаяся одновременно элементом системы поддержания уровня кузова.

Задняя подвеска
 с металлическими пружинами

Задняя пневмоподвеска

Основными элементами пневматической подвески являются:

- пневматическая пружина;
-компрессор;
- система трубопроводов и клапанов;
- блок управления пневматической подвеской;
- датчик уровня кузова.

Трубопроводы задней пневмоподвески

Компрессор пневматической подвески

Компрессор пневматической подвески крепится при помощи специального кронштейна к днищу кузова.

С системой управления компрессор соединен при помощи электрического разъема.

Задний стабилизатор

Задний стабилизатор поперечной устойчивости предназначен для противодействия крену автомобиля при прохождении поворотов или при движении на склоне. Задний стабилизатор поперечной устойчивости взаимодействует с передним стабилизатором. В целом эта система предназначена для улучшения управляемости автомобиля.

Задний стабилизатор крепится к кузову автомобиля в двух точках (2) при помощи резиновых втулок и крепежных скоб.

1. Стабилизатор
2. Крепление стабилизатора к кузову автомобиля
3. Тяга стабилизатора
4. Рычаг задней подвески

VN 5.016

Снятие и установка

- Поднимите автомобиль.
- Отсоедините тягу стабилизатора от стабилизатора.
- Открутите крепление стабилизатора от днища кузова (заднего подрамника).
- Снимите задний стабилизатор.
- Установка производится в обратном порядке.

Снятие и установка заднего амортизатора

Для снятия заднего амортизатора следует сжать при помощи домкрата пружину подвески, приподнимая задний рычаг, и открутить болты (4) и (5).

Установку следует производить в обратной последовательности.

Проверка состояния заднего амортизатора

Нижний резинометаллический шарнир амортизатора не пригоден к дальнейшей эксплуатации (смятие и износ резиновой части шарнира).

Нижний резинометаллический шарнир амортизатора не пригоден к дальнейшей эксплуатации (разрушение резиновой части шарнира).

Визуальная проверка состояния корпуса амортизатора

Незначительные повреждения слоя краски на корпусе амортизатора, причиненные случайными касаниями наружного колпака амортизатора. Такой амортизатор не нуждается в замене.

Повреждения металла корпуса амортизатора. Такой амортизатор подлежит замене.

VN 5.021

Снятие и установка рычагов задней подвески

Для снятия рычага задней подвески следует выполнить следующие действия.

- Снять защитный колпачок центральной гайки ступицы.
- Надежно затормозив колесо, ослабить центральную гайку задней ступицы.
- Снять колесо, предварительно установив автомобиль на домкрат (подъемник).
- Снять суппорт дискового тормоза, открутив винты крепления (4) (рис. VN 5.023), и подвесить его в стороне от зоны проведения работ.
- Отсоединить и снять приводной вал (2).
- Надежно закрепив рычаг при помощи подставки рычаг, ослабить винты (4) и (5).
- Снять амортизатор.
- Зафиксировать пружину (2) (рис. VN 5.022) подвески при помощи стяжного приспособления (1).

1. Стяжное приспособление
2. Пружина
3. Отбойник

VN 5.022

- Медленно опуская подставку, снять пружину (8).
- Открутить болты крепления (9) и (10), снять рычаг.
Установку следует производить в обратной последовательности.

1. Рычаг задней подвески
2. Приводной вал
3. Электропроводка
4. Винты крепления тормозного суппорта
5. Скоба суппорта

6. Тормозная скоба
7. Болт крепления датчика износа тормозных колодок
8. Пружина
9. Болт

10. Болт
11. Центральная гайка ступицы
12. Левый и правый задние датчики ABS
13. Левый и правый задние датчики износа тормозных колодок

VN 5.023

Моменты затяжки

Гайка болта крепления заднего рычага к подрамнику: 160 Нм + 120.
Центральная гайка ступицы: $\mathbf{1 6 5} \mathrm{Hм}+60^{\circ}$.

Болтовые соединения амортизатора с кузовом и с рычагом подвески: $\mathbf{1 3 0} \mathbf{~ H м . ~}$
Винт крепления датчика износа тормозных

колодок к суппорту 9 Нм.
Винт крепления суппорта к рычагу задней подвески (М12 x 1,5): 106 Hm .

Снятие и установка подшипника задней ступицы

Снятие

- Снимите рычаг задней подвески.
- Отсоедините трос ручного тормоза.
- Отсоедините задний датчик количества оборотов.
- Снимите втулку (1) (рис. VN 5.024).
- Зажмите рычаг задней подвески в тисках.
- Извлеките ступицу (2).
- Зажмите ступицу (2) в тисках.
- Снимите внутренней кольцо (3) подшипника со ступицы при помощи съемника.
- Снимите стопорное кольцо (4).
- Снимите защитную пластину (5) тормозного диска.
- Выпрессуйте наружное кольцо (6) старого подшипника.
- Очистите посадочное место подшипника.
- Запрессуйте кольцо нового подшипника.
- Далее установка производится в обратной последовательности.

Снятие и установка реактивной тяги заднего редуктора

1. Задний редуктор
2. Болты крепления реактивной тяги к кузову
3. Болты крепления реактивной тяги к редуктору
4. Реактивная тяга
5. Резиновая втулка

Замена сальника

 заднего редуктора

Внимание: при установке не повредите посадочную поверхность сальника и пружинное кольцо нового сальника.

Общая информация по проверке углов установки колес

Перед проверкой углов установки колес следует проверить автомобиль на соответствие условиям такой проверки.

- Состояние шин колес: визуальная проверка на износ и повреждения.
- Состояние колесных дисков: визуальная проверка на наличие повреждений.
- Проверить давление в шинах.
- Визуально проверить кузов, особенно места крепления элементов подвески на наличие деформаций.
- Проверить зазор в подшипниках ступиц (без применения индикатора).
- Визуально проверить состояние рулевого механизма.
- Визуально проверить состояние рулевых тяг.

Проверка продольного наклона платформы автомобиля при помощи электронного креномера

Проверка уровня передней оси

1. Электронный креномер (086)
2. Датчик креномера (086а)

Проверка уровня задней оси 1. Электронный креномер (086) 2. Датчик креномера (086а)

VN 5.029

После проведения ремонтных работ следует энергично раскачать автомобиль для того, чтобы подвески заняли нормальное положение.
Перед измерением и регулировкой углов установки колес следует проверить уровень платформы автомобиля по передней и задней осям. Для этого используется специализированный прибор, называемый креномером.

Крен автомобиля измеряется в четырех точках (передние правая и левая, задние правая и левая точки).
Спереди креномер устанавливается на рычаги подвески, сзади - на приводные валы колес.

Проверка и регулирование схождения передних колес

Для проверки схождения передних колес следует установить колеса в положение прямолинейного движения. Для этого следует использовать фиксатор (1) и штангу крепления (2).

1. Фиксатор рулевого колеса
2. Крепление фиксатора к рулевому колесу

VN 5.030

Кроме установки рулевого колеса в среднее положение следует проверить установку рулевого механизма по меткам (указаны стрелками на рис. VN 5.031).

Далее следует измерить угол продольного наклона платформы автомобиля (см. выше).
Перед измерением схождения колес следует установить штатную распорную штангу в передней части колес для того, чтобы произвести все смещения колес, которые возможны вследствие податливости упругих элементов крепления рычагов подвески.

В инструктивных материалах производителя содержатся рекомендации по проверке схождения колес при помощи специализированных (оптических) стендов. Поэтому данные по схождению колес приведены в угловыхединицах.

Примечание составителя: можно перевести значение схождения из угловых в линейные единицы (что более привычно для механиков в нашей стране).
Линейной характеристикой схождения является разность длины измерительной рейки, установленной между правым и левым колесом последовательно, сначала в передней части колес, затем в задней части колес (в точках наибольшей ширины шин, на одинаковом расстоянии от центра колеса).
Такое измерение даст значение общего схождения колес, тогда как на оптическом стенде измеряется значение схождения на одно колесо.
Расчетная формула:
$A=2^{*} D^{*} \operatorname{tg} a$,
Где:
A - общее схождение колес (мм);
D - диаметр окружности, на которой находятся точки установки измерительной штанги (мм);
a - угол схождения (на одно колесо).

Схождение передних колес

 автомобиля в зависимости от продольного наклона платформы автомобиля| Продольный
 наклон
 платформы
 автомобиля | Схождение (на
 одно колесо) |
| :---: | :---: |
| $+11,2^{\circ}$ | $+0^{\circ} 17^{\prime}\left(\pm 5^{\prime}\right)$ |
| $+10,4^{\circ}$ | $+0^{\circ} 15^{\prime}\left(\pm 5^{\prime}\right)$ |
| $+9,6^{\circ}$ | $+0^{\circ} 14^{\prime}\left(\pm 5^{\prime}\right)$ |
| $+8,8^{\circ}$ | $+0^{\circ} 12^{\prime}\left(\pm 5^{\prime}\right)$ |
| $+8,0^{\circ}$ | $+0^{\circ} 10^{\prime}\left(\pm 5^{\prime}\right)$ |
| $+7,2^{\circ}$ | $+0^{\circ} 09^{\prime}\left(\pm 5^{\prime}\right)$ |
| $+6,4^{\circ}$ | $+0^{\circ} 07^{\prime}\left(\pm 5^{\prime}\right)$ |

$+5,6^{\circ}$	$+0^{\circ} 05^{\prime}\left(\pm 5^{\prime}\right)$
$+4,8^{\circ}$	$+0^{\circ} 03^{\prime}\left(\pm 5^{\prime}\right)$
$+4,0^{\circ}$	$+0^{\circ} 01^{\prime}\left(\pm 5^{\prime}\right)$
$+3,2^{\circ}$	$-0^{\circ} 01^{\prime}\left(\pm 5^{\prime}\right)$
$+2,4^{\circ}$	$-0^{\circ} 03^{\prime}\left(\pm 5^{\prime}\right)$
$+1,6^{\circ}$	$-0^{\circ} 05^{\prime}\left(\pm 5^{\prime}\right)$
$+0,8^{\circ}$	$-0^{\circ} 07^{\prime}\left(\pm 5^{\prime}\right)$
$+0,0^{\circ}$	$-0^{\circ} 10^{\prime}\left(\pm 5^{\prime}\right)$
$-0,8^{\circ}$	$-0^{\circ} 12^{\prime}\left(\pm 5^{\star}\right)$

Примечания

1. Положительное значение схождения означает, что расстояние между передними краями колес меньше, чем между задними. Отрицательное - наоборот.
2. Допустимое значение разности схождения (на одно колесо) правого и левого колес: $0^{\circ} 5^{\prime}$.

Регулирование схождения производится изменением длины рулевых тяг за счет вворачивания или выворачивания резьбового конца тяги из наконечника рулевой тяги.

Фиксация регулировки производится при помощи контргайки (момент затяжки: $50 \mathrm{Hm})$.

Проверка и регулировка развала и продольного наклона оси поворота колеса
Перед измерением угла развала колес следует выполнить подготовительные действия, описанные выше.

Углы развала и продольного наклона оси поворота колеса

1. Верхний эксцентриковый болт
2. Нижний болт крепления поворотного кулака к стойке амортизатора
a. Угол развала колеса
b. Угол продольного наклона оси поворота колеса
C. Вид спереди
D. Вид слева

VN 5.034

Угол развала колес проверяется на специализированном оптическом стенде.

Регулировка угла развала колес производится вращением верхнего эксцентрикового болта крепления поворотного кулака к стойке амортизатора.

Угол развала переднего колеса в зависимости от продольного наклона платформы автомобиля

Продольный наклон платформы автомобиля	Угол развала $_{\text {колеса }}$
$+11,2^{\circ}$	$+0^{\circ} 30^{\prime}\left(\pm 20^{\prime}\right)$
$+10,4^{\circ}$	$+0^{\circ} 24^{\prime}\left(\pm 20^{\prime}\right)$
$+9,6^{\circ}$	$+0^{\circ} 18^{\prime}\left(\pm 20^{\prime}\right)$
$+8,8^{\circ}$	$+0^{\circ} 12^{\prime}\left(\pm 20^{\prime}\right)$
$+8,0^{\circ}$	$+0^{\circ} 07^{\prime}\left(\pm 20^{\prime}\right)$
$+7,2^{\circ}$	$+0^{\circ} 02^{\prime}\left(\pm 20^{\prime}\right)$
$+6,4^{\circ}$	$-0^{\circ} 03^{\prime}\left(\pm 20^{\circ}\right)$
$+5,6^{\circ}$	$-0^{\circ} 07^{\prime}\left(\pm 20^{\prime}\right)$
$+4,8^{\circ}$	$-0^{\circ} 11^{\prime}\left(\pm 20^{\prime}\right)$
$+4,0^{\circ}$	$-0^{\circ} 15^{\prime}\left(\pm 20^{\prime}\right)$
$+3,2^{\circ}$	$-0^{\circ} 18^{\prime}\left(\pm 20^{\prime}\right)$
$+2,4^{\circ}$	$-0^{\circ} 22^{\prime}\left(\pm 20^{\prime}\right)$
$+1,6^{\circ}$	$-0^{\circ} 25^{\prime}\left(\pm 20^{\prime}\right)$

$+0,8^{\circ}$	$-0^{\prime} 28^{\prime}\left(\pm 20^{\prime}\right)$
$0,0^{\circ}$	$-0^{\circ} 30^{\prime}\left(\pm 20^{\prime}\right)$
$-0,8^{\circ}$	$-0^{\circ} 32^{\prime}\left(\pm 20^{\prime}\right)$

Примечание: допустимое значение разности развала (на одно колесо) правого и левого колес: $0^{\circ} 20^{\prime}$.

Проверка и регулирование схождения

 задних колесПоскольку подвеска задних колес является независимой подвеской, то следует проверять углы установки задних колес.
К углам установки задних колес относятся две величины:

- угол схождения;
- угол развала.

Из этих двух величин регулировке подлежит только угол схождения колес.
Регулировка схождения осуществляется вращением эксцентрикового болта (1) крепления внутреннего сайлент-блока крепления рычага задней подвески. При этом вращение болта перемещает внутреннюю точку крепления рычага вперед-назад по ходу автомобиля. Это перемещение изменяет угол схождения заднего колеса.
Проверка схождения задних колес производится на оптическом стенде.
В таблице, приведенной ниже, показана зависимость схождения задних колес от угла продольного наклона платформы автомобиля. Эта зависимость не относится к автомобилям с пневматической подвеской задних колес, поскольку при эксплуатации такого автомобиля возможно регулирование уровня кузова с целью поддержания его на постоянном уровне.

Регулирование схождения задних колес

1. Эксцентриковый болт крепления внутреннего сайлент-блока рычага задней подвески

VN 5.035

Схождение задних колес автомобиля в зависимости от продольного наклона платформы автомобиля

Продольный наклон платформы автомобиля	Схождение (на одно колесо) в интервале значений угла продольного наклона от $+4,79^{\prime}$ до $-0^{\prime} 26^{\prime}$ $\left(\pm 10^{\prime}\right)-$
$+4,14^{\circ}$	$-0^{\circ} 23^{\prime}\left(\pm 10^{\prime}\right)-$
$+3,53^{\circ}$	$-0^{\circ} 19^{\prime}\left(\pm 10^{\prime}\right)-$
$+2,94^{\circ}$	$-0^{\circ} 16^{\prime}\left(\pm 10^{\prime}\right)-$
$+2,37^{\circ}$	$-0^{\circ} 13^{\prime}\left(\pm 10^{\prime}\right)-$
$+1,83^{\circ}$	$-0^{\circ} 09^{\prime}\left(\pm 10^{\prime}\right)-$
$+1,32^{\circ}$	$-0^{\circ} 06^{\prime}\left(\pm 10^{\prime}\right)-$
$+0,83^{\circ}$	$-0^{\circ} 03^{\prime}\left(\pm 10^{\prime}\right)-$
$+0,37^{\circ}$	$+0^{\circ} 00^{\prime}\left(\pm 10^{\prime}\right)-$
$-0,07^{\circ}$	$+0^{\circ} 03^{\prime}\left(\pm 10^{\prime}\right)-$
$-0,49^{\circ}$	$+0^{\circ} 05^{\prime}\left(\pm 10^{\prime}\right)-$

Продольный наклон платформы автомобиля	Схождение (на одно колесо) в интервале значений угла про- дольного наклона от $0,89^{\circ}$ до $+0^{\prime} 08^{\prime}\left(\pm 10^{\prime}\right)-$
$-1,26^{\circ}$	$+0^{\circ} 11^{\prime}\left(\pm 10^{\prime}\right)-$
$-1,62^{\circ}$	$+0^{\circ} 13^{\prime}\left(\pm 10^{\prime}\right)-$
$-1,95^{\circ}$	$+0^{\circ} 16^{\prime}\left(\pm 10^{\prime}\right)-$
$-2,27^{\circ}$	$+0^{\circ} 18^{\prime}\left(\pm 10^{\prime}\right)-$
$-2,57^{\circ}$	$+0^{\circ} 20^{\prime}\left(\pm 10^{\prime}\right)-$
$-2,85^{\circ}$	$+0^{\circ} 22^{\prime}\left(\pm 10^{\prime}\right)-$
$-3,11^{\circ}$	$+0^{\circ} 24^{\prime}\left(\pm 10^{\prime}\right)-$
$-3,36^{\circ}$	$+0^{\circ} 26^{\prime}\left(\pm 10^{\prime}\right)-$
$-3,59^{\circ}$	$+0^{\circ} 28^{\prime}\left(\pm 10^{\prime}\right)-$
$-3,81^{\circ}$	$+0^{\circ} 29^{\prime}\left(\pm 10^{\prime}\right)-$
$-4,01^{\circ}$	$+0^{\circ} 31^{\prime}\left(\pm 10^{\prime}\right)-$
$+0,82^{\circ}$	$-0^{\circ} 00^{\prime}\left(\pm 10^{\prime}\right)$

Примечание: допустимое значение разности схождения (на одно колесо) правого и левого колес: $\pm 0^{\circ} 10^{\prime}$.

Схема затяжки болта крепления рычага задней подвески: $160 \mathrm{Hm}+120^{\circ}$.

Проверка развала задних колес

Развал задних колес не регулируется. Проверка развала требуется для контроля состояния элементов задней подвески и элементов крепления подвески к кузову.
Если значения развала одного из задних колес выходят за пределы контрольных значений, следует проверить состояние подшипников ступицы и рычага задней подвески. При необходимости следует заменить поврежденные детали.

Угол развала заднего колеса в зависимости от продольного наклона платформы автомобиля

Продольный наклон платформы автомобиля	Угол развала колеса
$+4,79^{\circ}$	$-0^{\circ} 08^{\prime}\left(\pm 20^{\prime}\right)$
$+4,14^{\circ}$	$-0^{\prime} 15^{\prime}\left(\pm 20^{\prime}\right)$
$+3,53^{\circ}$	$-0^{\circ} 21^{\prime}\left(\pm 20^{\prime}\right)$
$+2,94^{\circ}$	$-0^{\circ} 27^{\prime}\left(\pm 20^{\prime}\right)$
$+2,37^{\circ}$	$-0^{\circ} 33^{\prime}\left(\pm 20^{\prime}\right)$
$+1,83^{\circ}$	$-0^{\circ} 38^{\prime}\left(\pm 20^{\prime}\right)$
$+1,32^{\circ}$	$-0^{\circ} 44^{\prime}\left(\pm 20^{\prime}\right)$
$+0,83^{\circ}$	$-0^{\circ} 49^{\prime}\left(\pm 20^{\prime}\right)$
$+0,37^{\circ}$	$-0^{\circ} 53^{\prime}\left(\pm 20^{\prime}\right)$
-0,07	$-0^{\circ} 58^{\prime}\left(\pm 20^{\prime}\right)$
-0,49 ${ }^{\circ}$	$-\Gamma 02{ }^{\prime}\left(\pm 20^{\prime}\right)$
-0,89 ${ }^{\circ}$	$-1^{*} 06^{\prime}\left(\pm 20^{\prime}\right)$
-1,26 ${ }^{\circ}$	$-70^{\prime}\left(\pm 20^{\prime}\right)$
$-1,62^{\circ}$	$-1^{\prime} 13^{\prime}\left(\pm 20^{\prime}\right)$
-1,95 ${ }^{\circ}$	$-1^{\circ} 16^{\prime}\left(\pm 20^{\prime}\right)$
-2,27 ${ }^{\circ}$	$-1^{\circ} 20^{\prime}\left(\pm 20^{\prime}\right)$
-2,57	$-1^{\circ} 23^{\prime}\left(\pm 20^{\prime}\right)$
-2,85 ${ }^{\circ}$	$-1^{\circ} 25^{\prime}\left(\pm 20^{\prime}\right)$
$-3,11^{\circ}$	$-1^{\circ} 28^{\prime}\left(\pm 20^{\prime}\right)$
$-3,36^{\circ}$	$-1^{\prime} 31^{\prime}\left(\pm 20^{\prime}\right)$
-3,59 ${ }^{\circ}$	$-1^{\prime} 32^{\prime}\left(\pm 20^{\prime}\right)$
$-3,81^{\circ}$	$-1^{\prime} 35^{\prime}\left(\pm 20^{\prime}\right)$
$-4,01^{\circ}$	$-1^{\prime} 37^{\prime}\left(\pm 20^{\prime}\right)$
4Γ	20 '

Примечание: допустимое значение разности развала (на одно колесо) правого и левого колес: $\pm 0^{\circ} 20^{\prime}$.

6. РУЛЕВОЕ УПРАВЛЕНИЕ

На автомобилях Vito Viano применяется pyлевой механизм реечного типа с гидравлическим усилителем. Рейка объединена со штоком гидравлического цилиндра.

В корпусе ведущей вал-шестерни рулевого механизма расположена система клапанов гидравлического распределителя, которая выполняет роль гидромеханической следящей системы. Эта следящая система приводит в действие гидравлический цилиндр усилителя РУ в строгом соответствии с движениями рулевого колеса.
Споворотнымикулакамипередних колес рейка соединена при помощи двухрулевых тяг.
На внутреннем конце рулевой тяги расположен сферический шарнир, корпус которого вкручивается в резьбовое отверстие, имеющееся в торце рейки. На внешнем конце рулевой тяги имеется сферический шарнир, называемый обычно наконечником рулевой тяги. Своим резьбовым отверстием наконечник рулевой тяги накручивается на резьбовой конец тяги и фиксируется контргайкой. При этом возможна регулировка длины рулевой тяги, которая используется при установке схождения передних колес.

Снятие и установка рулевого механизма

1. Установите рулевое колесо в положение движения прямо.

2. Корпус рулевого механизма
3. Рулевая тяга
4. Пыльник рулевой тяги
5. Наконечник рулевой тяги
6. Болт
7. Шайба
8. Болт
9. Гайка
10. Гайка

VN 6.001

3. Слейте масло из питающего бачка Гу.

Затем удалите остатки масла из рулевого механизма через возвратный шланг, попеременно вращая рулевое колесо из одного крайнего положения в другое.
4. Выкрутите болты (1) (рис. VN 6.002).
5. Подоприте двигатель, не поднимая его.
6. Отсоедините правый и левый рулевые наконечники (5) от поворотных кулаков (рис. VN 6.003).
7. Снимите защитный поддон моторного отсека.
8. Открутите гайки (7 и 8).
9. Снимите зажимы (9).
10. Отсоедините гидравлические трубки (11 и 12).
11. Отсоедините карданный шарнир рулевого вала (13) от рулевого механизма (14).
12. Выкрутите болты (16), при этом обратите внимание на разную длину болтов.
13. Подоприте подрамник (17).
14. Выкрутите болты (18).
15. Извлеките рулевой механизм через левую сторону автомобиля. Не проворачивайте рулевой механизм.
16. Установкапроизводитсяв обратном порядке.

[^2]VN 6.002

Гидравлический усилитель рулевого управления (ГУР)

Для нагнетания масла в гидравлический цилиндр используется роторно-лопастной гидравлический насос (такие насосы еще называются шиберными).
В полости насоса расположен эксцентрично установленный ротор, имеющий ряд равномерно расположенных по окружности щелевых пазов. В этих пазах установлены свободно скользящие металлические пластинки - лопасти. При вращении ротора пластинки под действием центробежной силы выходят из пазов и соприкасаются со стенками полости насоса. Нагнетание происходит за счет изменения объема, заключенного между парами соседних лопастей. Это изменение объема происходит за счет эксцентричности установки ротора. Такие насосы развивают давление порядка 8-13 MПа (80-130 бар).

Рулевая колонка

1. Кожух рулевой колонки
2. Замок блокировки рулевой колонки
3. Стержень замка блокировки рулевой колонки
4. Гайка
5. Болт
6. Болт

VN 6.005

Рулевое колесо

Рулевое колесо крепится к рулевому валу при помощи центрального винта.
На рулевом колесе установлен ряд клавиш управления, к которым подведены соединительные провода. Для того чтобы обеспечить надежный контакт во всех цепях при вращении рулевого колеса, применено устройство, называемое «часовой пружиной». Это название основывается на сходстве спиральных гибких контактных шин устройства с часовой пружиной. По сути, это устройство является вращающимся контактным сочленением. В устройстве такого типа не применяются скользящие контакты. Свобода вращения рулевого колеса без нарушения контакта обеспечивается достаточной длиной спирального пакета гибких шин. Этой длины должно быть достаточно для поворота рулевого колеса на 3-3,5 оборота в каждую сторону.

Внимание!

- Пред снятием подушки безопасности необходимо отключитьпитание бортовой сетиавтомобиля, после чего подождать не менее 1 минуты.
- При снятии рулевого колеса следует соблюдать особую осторожность во время снятия подушки безопасности водителя.
- Разборка и сборка подушки безопасности может нарушить работоспособность системы, что может привести к серьезным травмам или смерти.
- Неправильное соединение проводки подушки безопасности может привести в действие подушку безопасности. Если неисправность найдена в соединительных элементах, замените жгут проводов.
- Не используйте омметр для проверки подушки безопасности - это может привести ее в действие. Для этого нужно использовать систему бортовой диагностики в условиях СТО.
- При переноске подушки безопасности держите ее так, чтобы рабочая сторона не была направлена на вас.
- Не кладите подушку рабочей стороной вниз, так как при случайном срабатывании корпус подушки может быть отброшен разворачивающейся в произвольном направлении подушкой и нанести травмы.

VN 6.006

Снятие и установка

 рулевогоколеса1. Поверните рулевое колесо в центральное положение.
2. Открутите центральный винт (1).
3. Снимите рулевое колесо.
4. Установка в обратном порядке.

Снятие вращающегося контактного сочленения (BKC)

1. Снимите рулевое колесо.

2. Снимите наружную обшивку рулевой колонки (1) (рис. VN 6.008).
3. Открутите крепежные винты.
4. Снимите внутреннюю обшивку рулевой колонки (2).
5. Снимите панель под левой стороной приборного щитка.
6. Освободите все разъемы жгутапроводов (4).
7. Разъедините разъемы (7) и (8) жгута (5) контактной пружины (3),
8. Снимите клейкую ленту и фиксаторы жгута проводов (5) на корпусе электронного блока.
9. Открутите крепежные винты (6) для освобождения контактной пружины (3).
10. Осторожно снимите контактную пружину (3) с рулевой колонки.
11. Установка производитсяв обратном порядке.

Установка среднего положения вращающегося контактного сочленения (ВКС)

Регулировка BKC производится следующим образом.
Поверните корпус BKC против часовой стрелки до упора (больших усилий не прилагать!). Затем поверните корпус BKC по часовой стрелке на 3-3,5 оборота до совмещения отверстий под крепежные винты (1).

Снятие и установка датчика угла поворота рулевого колеса

1. Снимите вращающееся контактное сочленение (далее-BKC).
2. Снимите датчик угла поворота рулевого колеса (B24/8), потянув его вверх.
3. Отсоедините разъем датчика угла поворота рулевого колеса.
4. Установка производится в обратном порядке.

Снятие и установка пыльника рулевой тяги

1. Открутите контргайку (4).
2. Ослабьте внутренний (3) и внешний (1) хомуты пыльника.
3. Снимите пыльник рулевой тяги(2).
4. Установка производится в обратном порядке.

Снятие и установка рулевой тяги

Регулировка зазора зубчатого зацепления в реечном механизме

Регулировка зазора зубчатого зацепления производится следующим образом.

Затяните регулировочный винт (1) моментом $55-60$ Нм, после затяжки поверните регулировочный винт (1) против часовой стрелки на $1 / 8$ оборота.

1. Peryлировочный винт
2. Пружина
3. Нажимной башмак

VN 6.014

Снятие механизма электронной блокировки рулевого вала

1. Снимите левую защитную панель передней панели.
2. Вставьте ключ в замок зажигания.
3. Отсоедините разъем (1) механизма блокировки (3).
4. Поверните предохранительный болт (2) на 180° по часовой стрелке и вытащите его.
5. Снимите механизм электронной блокировки рулевого механизма (3).
6. Установка производится в обратном порядке.

7. TOPM03A

Элементы
тормозной системы
Автомобили Vito Viano оборудованы дисковыми тормозами передних и задних колес. Гидравлическая система: двухконтурная с диагональным распределением контуров.

Стояночный тормоз: барабанного типа. Барабаном стояночного тормоза является цилиндрическое полое основание заднего тормозного диска.
Работы по замене тормозных колодок и регулировке стояночного тормоза описаны в главе 1 «Техническое обслуживание".

Элементы рабочих тормозов колес

Передний дисковый тормоз

Задний дисковый тормоз

Снятие и установка педали тормозов

1. Снимите возвратную пружину педали тормоза (2).
2. Снимите проволочный фиксатор (4).
3. Выдавите ось штока ГТЦ (3). При установке смажьте ось штока ГТц.
4. Открутите гайку (6) крепления педали к кронштейну. При сборке гайку надо затянуть моментом 30 Hm .
5. Снимите педаль тормоза (1).
6. Установку производите в обратной последовательности.

7. Педаль тормоза
8. Возвратная пружина педали тормоза
9. Ось вилки штока ТТЦ
10. Шплинт
11. Защитная резинка педапи
12. Гайка оси сочленения педали тормоза и кронштейна

VN 7.004

Снятие и установка главного тормозного цилиндра (ГТЦ)

Внимание: при работах с тормозной системой избегайте nonaдания тормозной жидкости на кожу и лакокрасочные покрытия.

1. Удалите вакуум из усилителя тормозов. Для этого при заглушенном двигателе нажмите несколько раз на педаль тормоза, когда педаль станет жесткой - вакуум удален.
2. Снимите расширительный бачок (8) с кронштейна (14), при этом не отсоединяйте его от главного тормозного цилиндра.
3. Отсоедините напорные трубки (6) от ТТЦ. Для избегания попадания грязи на рабочую поверхность цилиндра закройте отверстия в корпусе ГТЦ пробками.
4. Открутите гайки (5) и снимите ГТЦ (4), потянув его в сторону передка автомобиля. При установке замените уплотнительное кольцо (2).
5. Отсоедините расширительный бачок (8) от ГЦК (4).
6. Установка производится в обратном порядке, после установки необходимо прокачать гидравлическую систему тормозов и сцепления (см. «Техническое обслуживание»).

Снятие установка вакуумного усилителя тормозов

1. Снимите бачок с охлаждающей жидкостью с кронштейна (2), при этом не отсоединяйте шланги от бачка.
2. Снимите бачек с тормозной жидкостью (4), не отсоединяя его от ГТЦ.
3. Удалите вакуум из вакуумной системы, для этого при заглушенном двигателе несколько раз нажмите на педаль тормоза.

4. Снимите ГТЦ

5. Отсоедините напорные трубки от гтц. При установке затяните моментом 14 Hm .
6. Снимите левую панель под приборнойпанелью.

7. Снимите возвратную пружину педали тормоза.

$$
\begin{aligned}
& \text { 8. Снимите шплинт (8) и ось вилки штока } \\
& \text { Гтц (9). } \\
& \text { 9. Открутите самоконтрящиеся гайки (ука- } \\
& \text { заны стрелками на рисунке) от усилителя } \\
& \text { тормозов (6). При сборке гайки затяните } \\
& \text { моментом } 20 \text { Нм. }
\end{aligned}
$$

10. Отсоедините вакуумную трубку (3) от вакуумного усилителя (6).
11. Снимите вакуумный усилитель (6) через моторный отсек.
12. Установка производится в обратном порядке. После установки отрегулируйте шток выключателя стоп-сигнала (10).

8. КУЗОВ

Кузов автомобилей Vito Viano: несущий, двухобъемный. Задние боковые двери - сдвижные. Задние торцевые двери могут быть распашными (2 двери), либо может устанавливаться одна подъемная дверь.
Данное семейство моделей может выпускаться во многих вариантах комплектации: от простого автомобиля для перевозки мелких партий грузов, до комфортабельного пассажирского автомобиля, укомплектованного по стандартам автомобилей представительского класса.
Кроме того, некоторые специализированные предприятия выпускают модификации, которые являются жилыми домами на колеcax. Такой модификацией является модель Westfalia.

Снятие и установка капота

1. Снимите верхнюю часть защелки капота (1).
2. Отметьте расположение капота (7) относительно петель (2). Не используйте царапающие предметы.
3. Открутите болты (3). При установке затяните моментом 20 Hm .
4. Снимите капот (7).
5. Установка производится в обратном порядке. После установки отрегулируйте капот по зазорам (см. еЗазоры").

6. Верхняя часть защелки капота 2. Петля капота
7. Болты
8. Буфер
9. Внутренняя облицовка капота
10. Подъемный упор
11. Kanot

Снятие и установка брызговиков

Снятие и установка решетки радиатора

Снятие и установка переднего бампера

1. Снимите решетку радиатора.
2. Снимите пистоны (1).
3. Отсоедините разъемы парктроника (7), для этого открутите болты (3).
4. Открутите болт (5).
5. Снимите бампер (6). При установке отрегулируйте зазоры.
6. Установка производится в обратном порядке.

Снятие и установка

 верхней накладки бампера1. Снимите передний бампер (4).
2. Снимите пистоны (2) и отщелкните накладку (1) от бампера (4).
3. Установкапроизводитсяв обратном порядке.

Разборка и сборка передней панели

Разборка и сборка передней панели описана в разделе "Снятие силового агрегата".

Снятие и установка опорной траверсы передней панели

1. Снимите передний бампер

2. Отсоедините разъем датчика температуры окружающей среды (6) (рис. VN 8.006).
3. Снимите обшивку (1).
4. Отсоедините разъем звукового сигнала, и снимите его.
5. Открутите болты (2) (3) (4), при установке затяните моментами: М8 - 25 Нм, M10-40 Hm.
6. Снимите опорную траверсу передней панели (5), двигая ее вниз.
7. Установка производится в обратном порядке.

Снятие и установка

внешнего зеркала заднего вида

1. Снимите защиту (1) (рис. VN 8.007).
2. Открутите винты (2), при установке затяните моментом 14 Hm .
3. Снимите зеркало (5) в сторону, указанную стрелкой.
4. Отсоедините разъемы (3) и (4), в зависимости от комплектации один из них может отсутствовать.
5. Установка производится в обратном порядке.

Снятие и установка

 переднего крыла1. Снимите передний бампер.
2. Снимите повторитель сигнала поворота.
3. Открутите винты (1). При установке затяните моментами:

- для автомобилей до номеракузова 252529 : -9 Hм.
- для автомобилей с номером кузова начиная с номера кузова 252530: 14 Нм.

4. Открутите болты (поз. 2-4) крепления крыла к кузову. При установке затяните моментами: М6-7 Нм, М5-4 Нм.
5. Снимите крыло (5). При установке выставьте крыло по направляющим (6).

Снятие и установка

 лючка топливного бака1. Снимите пластиковую полосу (1) с лючка (3).
2. Отсоедините страховочную ленту крышки бака (2) от лючка (3).
3. Открутите винты (4).
4. Снимите лючок (3) вместе с обшивкой горловины (5).
5. Установка производится в обратном порядке.

Снятие и установка углов заднего бампера

1. Открутите болты (1), при установке затяните моментом 9 Нм.
2. Снимите пистоны (2).
3. Отщелкните угол бампера (з), для этого надавите на него в направлении, указанном стрелкой на рисунке.
4. Снимите угол бампера (3), для этого разъедините фиксатор (4), потянув угол бампера назад.
5. Установка производится в обратном порядке.

Разборка и сборка заднего бампера

1. Снимите задний бампер.
2. Демонтируйте проводку и датчики системы парктроник.
3. Снимите отражатели (3).
4. Снимите углы (2) бампера.
5. Сборка производится в обратном порядке.

Снятие и установка усилителя бампера

1. Снимите задний бампер.
2. Открутите болты (1), при установке затяните моментом 7 Нм.
3. Снимите усилитель бампера (2).
4. Установка производится в обратном порядке.

Снятие и установка бокового крепления бампера

1. Снимите углы заднего бампера.
2. Отщелкните защелки (1).
3. Снимите кронштейн (2).
4. Установка производится в обратном порядке.

Снятие и установка подножки боковой двери

1. Снимите пластиковую обшивку подНожки.
2. Выкрутите болты (1).
3. Снимите подножку (2), отщелкнув защелки (3).

4. Болты
5. Подножка
6. Защелки

VN 8.014

Снятие и установка передних пассажирских сидений

1. Снимите минусовую клемму аккумулятора. 2. Снимите горизонтальную подушку сиденья.
2. Отсоедините разъем (3) преднатяжителя ремня среднего пассажира.
3. Открутите болты (1), при установке затяните моментом 33 Hm .
4. Снимите сиденье (2).
5. Установка производится в обратном порядке.

6. Болты 33 Hm
7. Передние пассажирские сиденья
8. Разъем преднатяжителя

ремней безопасности (X28/9)

Снятие и установка
верхних рейлингов

Сцепное устройство

На данных автомобилях устанавливается два типа сцепных устройств - съемное и фиксированное. Более подробная информация о сцепном устройств есть в "Инструкции по эксплуатации".

Регулировка зазоров при установке съемных элементов кузова осуществляется так, как показано на рисунках, приведенных ниже.

Зазоры не должны быть клиновидными.
Отклонение от параллельности краев эле-

ментов кузова не должно быть более 0,5 мм по всей длине зазора.

Если наружный зазор слишком велик или слишком мал, то следует откорректировать установку соответствующей части кузова.

Предельное отклонение вертикали при установке элемента кузова не должно превышать $0,5 \mathrm{mм}$. Приведенные справочные данные предназначены для использования при ремонте кузова, поврежденного в аварии.

Зазоры мажду элементами задней части кузова

С распашными дверями

С подъемной дверью

Зазоры между элементам кузова

VN 8.020

Контрольные данные по зазорам при установке съемных элементов кузова（в мм）

Зазор между капотом и крылом	A	4 （ $\pm 1)$
Зазор между капотом и накладкой бампера	B	$6(\pm 1)$
Зазор между передней дверью и крыльями	C	5（ $\pm 1)$
Зазор между передней дверью и крышей	D	$5(\pm 1)$
Зазор между передней дверь и порогом	E	$5(\pm 1)$
Зазор между передней дверью и верхней часть боковой стенки	F	$5(\pm 1)$
Зазор между передней дверью и нижней частью боковой стенки	G	$5(\pm 1)$
Зазор между передней дверью и верхней частью сдвижной двери	H	6（土1）
Зазор между сдвижной дверью и крышей	1	6 （ $\pm 1)$
Зазор между передней дверью и нижней частью сдвижной двери	J	$5(\pm 1)$
Зазор между сдвижной дверью и порогом	K	6（土1）
Зазор между сдвижной дверью и верхней частью боковой стенки	L	6 （土1）
Зазор между сдвижной дверью и нижней часть боковой стенки	L	6（ $\pm 1)$
Зазор между средним и задним окнами	M	$11(\pm 0,5)$
Зазор между задним фонарем и боковой стенкой	N	$4(\pm 1)$
Зазор между нижним задним фонарем и боковой стенкой	0	4 （土1）
Зазор между распашной задней дверью и крышей	P	8，5（ $\pm 1)$
Зазор между распашной задней дверью и верхним задним фонарем	Q	$6(\pm 2,5)$
Зазор между распашной задней дверью и нижним задним фонарем	R	$6(\pm 2,5)$
Зазор между распашной задней дверью и боковой накладкой бампера	S	7 （土1）
Зазор между распашной задней дверью и нижней частью бампера	T	7 （ ± 1 ）
Зазор между задними распашными дверями	U	6 （ $\pm 1)$
Зазор между задней подьемной дверью и крышей	V	8，5（ $\pm 1)$
Зазор между задней подъемной дверью и верхним задним фонарем	W	$6(\pm 1,5)$
Зазор между задней подъемной дверью и нижним задним фонарем	X	$5(\pm 2,5)$
Зазор между задней подъемной дверью и боковой накладкой бампера	Y	6 （ $\pm 1)$
Зазор между задней подъемной дверью и нижней часть бампера	Z	$7(\pm 1)$
Зазор между лючком топливозаливной горловины и верхней частью передней двери	AA	$5(\pm 1)$
Зазор между лючком топливозаливной горловины и нижней частью передней двери	$A B$	$5(\pm 1)$
Зазор между лючком топливозәливной горловины и верхннй частью боковой стенки	AC	$5(\pm$ D
Зазор между лючком топливозаливной горловины и нижней частью боковой стенки	AD	5 （土1）
Зазор между лючком топливозаливной горловины и верхней часть сдвижной двери	$A C$	$6(\pm 1)$
Зазор между лючком топливозаливной горловины и нижней частью сдвижной двери	AD	6 （ $\pm 1)$
Зазор между накладкой бампера и решеткой радиатора	AE	6 （ $\pm 1)$
Зазор между бампером и накладкой бампера	AF	0
Зазор между крылом и передней стойкой	AG	4（ $\pm 1)$
Зазор между накладкой бампера и крылом	AH	0
Зазор между крылом и фарой	Al	4（ ± 1 ）
Зазор между фарой и капотом	AJ	4 （ $\pm 1)$
Зазор между указателем поворота и крылом	AK	4 （ $\pm 1)$

9. СИСТЕМА УПРАВЛЕНИЯ АВТОМОБИЛЕМ

Современные автомобили имеют много систем, которые должны управляться согласованно. Сложность взаимодействия различных систем автомобиля приводит к тому, что совокупность управляющих систем автомобиля следует рассматривать как общую систему управления автомобилем, которая подразделяется на ряд подсистем.

Основными функциями подсистем являются следующие:

- управление двигателем;
- управление КПП;
- управление системами курсовой устойчивости;
- управление системойпассивнойбезопасности; - управление системой освещения;
- управление системойподдержания комфорта.

Для объединения подсистем в единую систему в автомобиле создана единая информационная сеть.

Информационная сеть автомобиля (по состоянию на 01.01.2007)

Основой создания объединенной системы управления автомобилей Vito Viano являются три мультиплексные сети обмена данными.

ных на а/м Mercedes Benz составляет от 83 Кбит/с до 500 Кбит/с.
5. Несколько сообщений могут поочередно передаваться по одной и той же линии.

Ниже на рисунках представлены блок-схема мультиплексной сети и схема распределения информации в комплексном сигнале мультиплексной сети.
4. Высокая скорость передачи данных до 1 Мбит/с при макс. длине линии 40 m (в настоящее время на а/м Mercedes Benz не используется). Скорость передачи дан-

Примерная блок-схема мультиплексной (CAN) сети
VN 9.001

Принцип формирования сигналов в мультиплексной сети

 щение о неисправности выдают все использующие данный сигнал системы, неисправ-ным является, как правило, датчик или блок зующие данный сигнал системы, неисправ-
ным является, как правило, датчик или блок управления, обрабатывающий его сигналы. Если сообщение онеисправности поступает
только от одной системы, хотя данный сигЕсли сообщение онеисправности поступает
только от одной системы, хотя данный сигнал используется и другими системами, то причина неисправности чаще всего закліючена в обрабатывающем блоке управления или исполнительном механизме.
 сти только к ближайшему блоку ния, который преобразовывает измеренные значения в пакет данных и передает его на шину данных CAN.
В этом случае управлять сервомеханизмом может какой-либо другой блок управления, который по шине данных CAN получает соответствующий пакет данных и на его основе рассчитывает значение управляющего воздействия на сервомеханизм.
2. Сигналы с одного датчика (например, с датчика температуры охлаждающей жидкости) могут быть использованы различными системами.
3. Улучшение возможностей диагностирования. Так как сигналы с одного датчика (напр., сигнал скорости) используются различными системами, тов случае если сооб

Принцип действия мультиплексной сети CAN

Применявшееся ранее кабельное соединение отдельных электрических и электронных устройств (стандартное кабельное соединение) обуславливает прямое соединение каждого блока управления со всеми датчиками и исполнительными элементами, от которых данный блок получал измеренные значения или которыми он управлял. При определенных обстоятельствах это может привести к чрезмерной длине или дублированию кабельных линий. По сравнению со стандартной кабельной разводкой шина данных обеспечивает следующие преимущества.

1. Провода от датчиков необходимо про.

В настоящее время на Daimler Chrysler используется только стандартный формат.
Пакет данных для передачи сообщений по шине данных CAN состоит из семи последовательных полей.

- Начало блока данных: маркирует начало сообщения (стартовый бит) и синхронизирует все модули.
- Поле идентификации: это поле состоит из идентификатора (идентификатор адреса) в 11 бит, 1 контрольного битаи иапроса) (Remote Transmission Request-Bit). Этот контрольный бит маркирует пакет как Data Frame (блок данных сообщения) или как Remote Frame (блок данных запроса) без собственно сообщения.
- Поле управления: (6бит) содержитIDE (ynравляющие биты) бит (Identifier Extension Bit) для распознавания стандартного и расширенного формата, резервный бит для последующих расширений и - в последних 4 битах - количество байтов данных, заложенныхв поле данных.
- Поле данных: может содержать от 0 до 8 байт (от 0 до 64 бит) данных. Сообщение по шине данных CAN длиной 0 байт используется для синхронизации распределенныхпроцессов.

Контрольное поле: CRC (Cyclic-Redundancy-Check Field) содержит 16 бит и служит для контрольного распознавания ошибок при передаче.

Поле подтверждения приема ACK (Acknowledgement Field) содержит сигнал подтверждения от блоков-приемников о получении безошибочных сообщений по шине данных CAN.

- Конец блока данных: маркирует конец пакета данных.
- Интервал между блоками данных: разделяет блоки данных во времени и должен содержать не менее 3 бит. После этого любой блок управления может передавать следующий пакет данных.
- Состояние покоя: если ни один блок управления не передает сообщений (режим покоя), то шина данных CAN остаетсяв режиме покоя до передачи следующего пакета данных.

Блок-схема мультиплексных сетей автомобилей Vito - Viano

Для обмена информацией между элементами системы управления в автомобиле применены три системы передачи данных:

- шина данных класса В, функционирующая в салоне автомобиля (CAN B);
- шина данных класса C, функционирующая в моторном отсеке автомобиля (CAN C);

Код	согласно кодам комплектации (см. таблицу).
EP5	Многодисковый CD-проигрыватель
EN2	Система аавтопилот» с интерфейсом TMC
EM9	DVD-проигрыватель с телевизионным приемником и экраном в задней части салона
H12	Дополнительный подогреватель (теплая вода)
EL1	Голосовое управление телефоном (система Linguаtronіс, немецкий язык)
EH3	Радиоподготовка для системы мобильной связи СТЕL
ED5	Специализированный блок параметризации (PSM)
E57	Электрическая система разъема прицепа
SF1	Сиденье с электрической регулировкой положения и памятью (водитель)
SF2	Сиденье с электрической регулировкой положения и памятью (пассажир)
CL0	Задняя пневматическая подвеска с регулированием уровня кузова
EZ8	Система Рагкtтопіс (РТS)
LD0	Верхняя панель управления с индивидуальной подсветкой для водителя и переднего пассажира
D24	Прозрачная наклоняющаяся и сдвигающаяся крыша пассажирского салона

Список компонентов мультиплексных сетей

A1	Комбинация приборов	N30/4	ESP control unit
A2/6	Многодисковый CD-проигрыватель	N32/1	Блок управления передним левым сиденьем с запоминанием настроек
A2/42	ТВ-приемник		Блок управления передним правым сиденьем с запоминанием настроек
A2/56	Блок радио и навигации	N32/2	
A6n1	Блок управления системы STH	N33/4	Блок управления РTC control unit
A35/11	Блок управления системы SBS	N51/3	Блок управления ENR control unit
A35/13	Телефонный приемопередатчик	N62	Блок управления системой Parctronic (PTS)
N2/10	Блок управления подушками безопасности (SRS)	N69/1	Блок управления передней левой дверью
N3/9	Блок управления двигателем (CDI)	N69/2	Блок управления передней правой дверью
N10	Передний универсальный блок коммутации (SAM)	N70	Блок управления потолочной панелью управления
N15/3	Блок управления системой (EGS)	N70/1	Блок управления задним сдвижным люком (SDE-H)
N15/5	Блок управления электронным селектором передач	N72/1	Блок управления верхней панелью управления
N26/15	Специализированный блок параметризации (PSM)	N73	Блок управления системой EIS (EZS)
N28/1	Блок коммутации с прицепом (AAG)	S98	Блок управления кондиционированием воздуха

Операционные поля перечисленных систем распределяются следующим образом.

- Шина данных класса B (CAN B) связывает блоки обеспечения комфорта и управления освещением (например, стеклоподъемники, подогрев стекол, наружное и внутреннее освещение).
- Шина данных класса C (CAN с) связывает блоки управления двигателем, трансмиссией, тормозами и системами курсовой устойчивости.
- Цифровая шина данных (D2B) посредством оптоволоконного кабеля обеспечивает коммуникацию средств навигации и связи.

Перечисленные информационные сети предъявляют высокие требования в части электромагнитной совместимости и скорости передачи данных.

Обмен данными между шинами данных

Связь шин данных обеспечивают следующие блоки управления.

- Блок управления управленческой информационной системы (N73) связан с шинами (CANB) и (CAN C).
- Блок управления и индикации (А40/3) с кодом комплектации (EN4).
- Система «Автопилот» с TMC интерфейсом скодом комплектации (EN9).
- Система «Автопилот» для Японии с радио и навигационным блоком (А2/56) с кодом комплектации (EN2).
- Система «Автопилот» с TMC интерфейсом или радио (А2) с кодом комплектации (EU3).
- Аудиосистема с кассетным магнитофоном с кодом комплектации (EU4).
- Аудиосистема с CD приводом, формирующая связь между сетями CAN-B и D2B.

Блок управления системы EIS (N73) осуществляет связь между сетью CAN-B и диагностическим разъемом (X11) системы STAR DIAGNOSIS.

Комбинация приборов (A1)

Несмотря на то, что комбинация приборов (A1) соединена с обеими мультиплексными сетями CAN-B и CAN-C и обменивается с ними информацией, эта система не является межсетевым интерфейсом.

Во всех блоках управления сети CAN-B используется международный стандарт OSEK (система открытого типа с интерфейсом для использования в автомобильных электронных устройствах).

Передний универсальный блок коммутации

Блок установлен в моторном отсеке.

Передний универсальный блок коммутации (N10) (SAM) соединен с мультиплексной сетью CAN-B. Этот блок принимает, записывает сигналы датчиков и передает эту информацию в сеть CAN-B. Такими устройствами являются следующие.

- Датчики.
- Блок контроля уровня масла.
- Датчики-переключатели.
- Сеть CAN-B в качестве источника информации.
В блоке содержатся электронные переключатели для управления рядом систем.
Для управления также используются электромагнитные реле, имеющиеся в блоке.

Функции блока SAM

Блок управляет следующими функциями.

- Наружное освещение (ABL).
- Внутреннее освещение (IBL).
- Поиск устройств подсветки и управление ими.
- Формирование сигналов указателей поворотов.
- Управление передними и задними стеклоомывателями и стеклоочистителями (HCS (SRA)) с кодом комплектации (F46).
- Управление системой очистки фар (HHS)

с кодом комплектации (W78).

- Подогрев заднего стекла (HHS)
- Управление внешним звуковым сигналом (H1).
- Управление центральным замком (CL (ZV).
- Управление противоугонной системой (ETW, ATA) с защитой внутреннего пространства, с датчиком несанкционированной буксировки и звуковым сигналом с независимым питанием (код комплектации FY1) EDW2.

Или

- Противоугонной сигнализацией (код комплектации FZ5).
- Управление открыванием окон в пассажирском салоне (код комплектации W32).
- Управление задним вентиляционным окном салона.
- Управление процессом диагностики.
- Управление системой диагностики (SD).

Система управления

 двигателемДвигатели семейства OM611 и OM 612 являются быстроходными двигателями с непосредственным впрыском дизельного топлива в цилиндры, которые оснащены различными типами турбонагнетателей.

Особенности применяемой на описываемых двигателях системы типа "Common Rail»:

- Применение непосредственного впрыска топлива в цилиндры двигателя.
- Дозирование топлива при помощи системы электронного управления. При этом ТНВД не участвует в дозировании топлива и синхронизации процессов воспламенения топлива. Задача ТНВД - создать в топливном коллекторе (аккумуляторе) высокого давления требуемое на данный момент давление топлива. Регулирующие механизмы ТНВД управляются электронной системой управления впрыском топлива.
- Применение быстродействующих топливных форсунок, которые управляются электронной системой управления впрыском топлива.
- Высокая эффективность процессов управления впрыском топлива. Это становится возможным благодаря применению быстродействующего цифрового процессора, который предназначен для выработки управляющего воздействия на исполнительные органы системы управления на основе информации, получаемой от ряда датчиков.
Таким образом, система Common Rail позволяет реализовывать режимы работы системы подачи топлива, недоступные системам подачи топлива с механическим или элект-ронно-механическим регулированием.

Система непосредственного впрыска дизельного топлива предусматривает следующие варианты характеристик двигателей в зависимости от мощности и примененного стандарта эмиссии вредных веществ (данное описание приведено для двигателей, не оснащенных сажевым фильтром):

- (код MC1): дизельный двигатель OM646 DE 22LA, 65 кВт (88 л.с.), при 3800 об/мин, в том числе с дополнительными кодами исполнения (комплектации):
- с кодом MS3: версия Euro 3;
- с кодом MF8: двигатель с пониженной эмиссией (EU3 Group 3).
- (код МС2): Дизельный двигатель ОМ646 DE 22LA, 80 кВт (109 л.с.), при 3800 об/мин, в том числе с дополнительными кодами исполнения (комплектации):
- с кодом MS3: версия Euro 3;
- с кодом MF8: двигатель с пониженной эмиссией (EU3 Group 3);
- с кодом MF4: двигатель с пониженной эмиссией (EU4 Group 3).
- (код МСЗ): дизельный двигатель OM646 DE 22LA, 110 кВт (150 л.с.), при 3800 об/мин, в том числе с дополнительными кодами исполнения (комплектации):
- с кодом MS3: версия Euro 3;
- с кодом MF8: двигатель с пониженной эмиссией (EU3 Group 3);
- с кодом MF4: двигатель с пониженной эмиссией (EU4 Group 3).

Назначение системы управления двигателем

Функции, выполняемые системой управления в различных режимах
Система CDI выполняет ряд функций, из которых состоит процесс управления силовым агрегатом.

- Функция подачи топлива к ТНВД.

- Функция управления впрыскиванием топлива состоит из следующих функций:
- функция предварительного впрыска;
- функция основного впрыска.
- функция заключительного этапа впрыска.
- Функция предпускового нагрева свечей накаливания.
- Функция регулирования давления наддува.
- Функция ограничения вредных выбросов в окружающее пространство.
- Функция поддержания заданной скорости.

Управление подачей топлива к ТНВД

Топливо подается при помощи топливоподкачивающего насоса, расположенного в приемно-измерительном блоке (МЗ/3) топливного бака. Питание на насос подается из блока управления CDI через реле топливоподкачивающего насоса(K40/ 9k6). Количество топлива, подаваемого к ТНВД (M41), регулируется клапаном (Y94), которым управляет также блок управления CDI.

Управление количеством впрыскиваемого топлива

В системе непосредственного впрыска с использованием ТКВД (CDI) регулирование количества впрыскиваемого топлива имеет большее значение, чем в предыдущих технологиях впрыскивания топлива.
При расчете параметров процесса впрыскивания топлива учитываются положение педали акселератора и рабочее состояние двигателя (сумма параметров, измеряемых датчиками).
При этом рассчитываются следующие параметры:

- давление топлива в ТКВД;
- момент начала впрыска;
- продолжительность впрыска.

Дополнительными частными функциями системы управления впрыском являются:

- управление режимом запуска двигателя;
- управление режимом холостого хода (750 об/мин);
- управления режимом полной нагрузки (ограничение количества впрыскиваемого топлива);
- функция выравнивания работы двигателя;
- ограничение максимальной частоты вращения (4200-4600 об/мин);
- прекращение впрыскивания топлива при отпущенной педали акселератора и частоте вращения двигателя выше 1500 об/мин (режим принудительного холостого хода).

Управление давлением впрыскиваемого топлива

Давление в ТКВД регулируется при помощи клапана (Y74), на который подается импульсный (включено-выключено) сигнал из блока управления CDI.
Данные для расчета управляющеговоздействия на клапан блок управления впрыском получает от чувствительного датчика давления топлива в ТКВД (B4/6). Определение рабочего значения давления топлива производится на основе корректирующих данных от встроенного в блок датчика атмосферного давления, датчика температуры ОЖ (B11/4) и датчика температуры входящего воздуха (В2/5b1).

Управление количеством в прыскиваемого топлива в режиме запуска двигателя

Подача топлива в пусковом режиме не зависит от положения педали акселератора. Пусковой режим определяется системой CDI по температуре ОЖ ниже $80^{\circ} \mathrm{C}$ и частоте вращения двигателя ниже 500 об/мин.

Блок управления CDI в этом режиме вырабатывает управляющие сигналы для следующих элементов системы:

- клапана регулирования давления (Y74);
- топливных форсунок (Y76y1 - Y76y4);
- клапана регулирования подачи топлива (Y94).
В этом режиме блок принимает следующую информацию:
- Сообщение от блока (N73) управления системой EIS (кондиционирование воздуха) о наличии питания в цепи TmI .50 ON .
- Сигнал датчика температуры по отдельной линии (B11/4).
- Сигнал датчика педали акселератора по мультиплексной сети CAN-C (B37/3).
- Сигнал частоты вращения двигателя по отдельной цепи (L5).
- Сигнал о положении селектора АКПП из блока селектора передач (N15/5).
Окончание режима пуска система определяет по выключению стартера. С этого момента подача топлива зависит от положения педали акселератора.

Управление впрыском в режиме движения

Главной задачей системы CDI в этом режиме является обеспечение требуемого значения крутящего момента двигателя, которое задается положением педали акселератора.

Для этого блок считывает значения следующих переменных.

- Данные о расходе и температуре воздуха, поступающие от датчика массы входящего воздуха (B2/5) (далее - датчика MAF) и от встроенного в датчик MAF датчика (B2/ 5b1) температуры воздуха (для двигателей с кодом MF4).
- Текущее значение давления в ТКВД от датчика (B4/6) давления.
- Текущие значения давления наддува от датчика (B5/1) и температуры нагнетаемого воздуха от датчика (B17/9).
-Температуры ОЖ от датчика(B11/4).
Кроме того ЭБУ CDI связан (CAN-C) (далее в тексте подобным образом в скобках указаны мультиплексные сети, по которым осуществляется связь) со следующими блоками управления для получения перечисленной ниже информации.
- С комбинацией приборов (A1) (CAN-C -CAN-B) для обеспечения режима ограничения скорости на зимних шинах или режима измерения тягового усилия для системы ESP.
- С блоком управления ETC (EGS) для определения номера передачи АКПП.

ЭБУ CDI в режиме движения осуществляет следующие управляющие функции:

- управление подачей топлива;
- управление наддувом
- управление эмиссией вредных веществ (MF8 и MF4) (далее в тексте подобным образом в скобках указаны коды исполнения двигателей с ограничением эмиссии вредных веществ (см. в начале раздела));
- отключение компрессора (А9) кондиционера.

В этом режиме блок принимает следующую информацию.

- Сигнал датчика педали акселератора по мультиплексной сети CAN-C (B37/3).
- Сигнал датчика температуры топлива (B50).
- Сигнал датчика давления в ТКВД(B4/6).
- Сигнал входного (в преобразователь ОГ) датчика кислорода (G3/2) (MF4).
- Сигнал частоты вращения двигателя по отдельной цепи (L5).
- Сигнал о положении селектора АКПП из блока селектора передач (N15/5).
- Сигналы датчиков частоты вращения колес из блока управления ESP (N30/4),
- Сигнал датчика температуры ОЖ по отдельной линии (B11/4).

Управление впрыском в режиме холостого хода

Частота вращения двигателя на холостом ходу поддерживается примерно равной 600 об/мин.

В этом режиме блок принимает следующую информацию.

- Сообщение от блока (N73) о том, включен или выключен компрессор кондиционера.
- Сигнал о положении селектора АКПП из блока селектора передач (N15/5).
- Сигнал частоты вращения двигателя по отдельной цепи (L5).
- Сигнал датчика температуры ОЖ по отдельной линии (B11/4).
- Сигнал датчика педали акселератора по мультиплексной сети CAN-C (B37/3).
- Сигнал частоты вращения двигателя по отдельной цепи (L5) для сравнения текущего значения частоты вращения с заданным значением.

Для обеспечения оптимального горения топлива впрыск может производиться в три этапа.

- Предварительный впрыск.
- Основной впрыск.
- Заключительный этап впрыска.

Суть этого усовершенствования состоит в том, что при большом цикловом количестве топлива и невысокой частоте вращения двигателя может происходить "жесткое» сгорание топлива, т.е. слишком быстрое протекание процесса горения. Для того чтобы согласовать скорость сгорания топлива с частотой вращения и нагрузкой на двигатель, применено разделение процесса впрыска на несколько этапов. При этом, в некоторых условиях (см. ниже) разделение процесса на этапы может не производиться.

Функция управления впрыскиванием предварительной порции топлива

Предварительный впрыск включается в тех случаях, когда количество топлива, рассчитанное для впрыска в данном цикле велико (достаточно для разделения цикла на несколько этапов).

Этот режим существенно влияет на шумность двигателя и на количество выброса вредных веществ в окружающее пространство. Данный режим характеризуется относительно малым количеством впрыскиваемого топлива: от 0,5 мм 3 до 1,5 мм 3 за один такт при давлении топлива 200 бар (20 МПа). Нижняя граница этого интервала определяется условиями распыления топлива. Превышение верхней границы приводит к увеличению шумности работы двигателя и к увеличению количества вредных выбросов (твердых частиц).

Предварительный впрыск реализуется практически во всем диапазоне режимов работы двигателя вплоть до частоты вращения 3500 об/мин и давления топлива в ТКВД 1200 бар ($120 \mathrm{M} П а)$.
Режим предварительного впрыска отключается при следующих обстоятельствах.

- Частота вращения двигателя слишком высока.
- Расчетная подача топлива слишком мала для предварительного впрыска.
- Расчетная подача топлива для основного впрыска слишком мала.
- Недостаточное количество топлива в ТКВД.
- Двигатель остановлен.

Количество топлива, выделяемого для предварительного впрыска, является частью общего количества топлива, рассчитанного для всего цикла.

Функция управления впрыскиванием основной порции топллива

Основной впрыск является вторым этапом впрыска при наличии предварительного впрыска. Случаи отсутствия предварительного впрыска описаны выше.

При расчете главной впрыскиваемой порции топлива ЭБУ CDI определяет два параметра:

- момент начала впрыскивания;
- продолжительность впрыскивания.

Основной впрыск прекращается в следующих случаях.

- Частота вращения двигателя превышает 4700-4800 об/мин
- Количество топлива, рассчитанное для впрыска, слишком мало.
- Недостаточное количество топлива в ТКВД.
- Внешнее (для ЭБУ CDI) воздействие, например, вмешательство системы ограничения тягового усилия (ESP).
- Автомобиль движется в режиме принудительного холостого хода.
- Двигатель остановлен.

Для формирования этапа основного впрыска используется следующая информация.

- Сигнал частоты вращения двигателя по отдельной цепи (L5).
- Сигнал датчика атмосферного давления (B28/5) на выходе из воздушного фильтра.
- Сигнал датчика температуры ОЖ по отдельной линии(B11/4).

Для определения распределения циклового количества топлива по этапам впрыска используется следующая информация:

- Сигнал датчика температуры нагнетаемого воздуха (В17/9).
- Сигнал датчика давления в ТКВД (B4/6).
- Сигнал датчика давления наддува (B5/1).
- Данные о расходе и температуре воздуха, поступающие от датчика массы входящего воздуха (B2/5) (далее - датчика MAF) и от встроенного в датчик MAF датчика (B2) 5b1) температуры воздуха (для двигателей с кодом MF4).
- Сигнал входного (в преобразователь ОГ) датчика кислорода (G3/2) (MF4).

Заключительный этап впрыска

Заключительный этап впрыска применяется в основном для снижения содержания твердых частиц в ОГ. Принцип определения параметров впрыска аналогичен тем, которые описаны выше.

Функция предварительного нагрева свечей накаливания

Система предпускового нагрева свечей накаливания предназначена для достижения необходимой температуры воспламенения топливной смеси в цилиндре в момент холодного пуска. Кроме того, при экономной подаче топлива в цилиндры требуется по-

высить надежность воспламенения впрыскиваемого топлива. Для этого служат свечи накаливания, которые за счет горения топлива остаются в накаленном состоянии.

Камера сгорания предварительно нагревается при помощи свечей накаливания, питаемых от выходного каскада системы предпускового нагрева. Длительность предпускового нагрева зависит от температуры охлаждающей жидкости. Когда ключ устанавливается в положение 2, блок управления CDI (N3/9) выдает команду активации выходного каскада предпускового нагрева (A1е13) и включения сигнальной лампы предпускового нагрева (A1e13), расположенной на комбинации приборов. Длительность предпускового нагрева рассчитывается блоком управления двигателем.

Световой индикатор предварительного нагрева (A1e13) гаснет с окончанием этапа предварительного нагрева.

Информация, получаемая ЭБУ CDI, описана в описании пускового режима подачи топлива (см. выше).
ЭБУ CDI активирует выходной каскад (N14/2), который подает питание к свечам накаливания (R9/1 - R9/4).

Зависимость времени предварительного нагрева от температуры ОЖ
t. Продолжительность нагрева, с
T. Температура ОЖ в градусах Цельсия

VN 9.005

Послепусковой нагрев

Режим послепускового нагрева предназначен для улучшения пусковых характеристик двигателя, выравнивания работы двигателя при холодном пуске, предотвращения появления синего дыма (не полностью сгоревшее топливо) после запуска двигателя.

Длительность этапов нагрева свечей накаливания зависит от температуры ОЖ.

Зависимость времени предварительного нагрева от температуры ОЖ
t. Продолжительность нагрева, с
Т. Температура ОЖ в градусах Цельсия

VN 9.006

Функция управления давлением наддува

Давление наддува определяется частотой вращения турбины нагнетателя. Регулирование частоты вращения турбины производится по сигналам ЭБУ CDI.
Датчик давления наддува (B5/1) передает данные о давлении в ЭБУ CDI, который управляет вакуумным преобразователем привода регулирования турбонагнетателя.

В автомобилях с кодами комплектации (MF4)и (MF8) давление наддува регулируется путем поворота лопаток направляющего аппарата турбины, а в двигателях версии Euro 3 применяется управление заслонкой перепускного канала.

Функция управления эмиссией вредных веществ в окружающую среду

Определение соотношения

 воздух-топливоНа автомобилях с кодом комплектации (MF4) также контролируется соотношение воздух-топливо при помощи датчика кислорода.

Управление рециркуляцией отработавших газов (EGR)

На автомобилях с кодами комплектации (MF4)и (MF8) система CDI посредством блока управления CDI (N3/9) и вакуумного преобразователя (Y31/5) управляет клапаном рециркуляции OГ (Y27), который peryлирует добавление (предварительно охлаждаемых) ОГ во впускной тракт двигателя с целью снижения температуры горения топлива. Тем самым система EGR снижает количество окислов азота в ОГ (NOX).
Отработавшие газы проходят через каталитический преобразователь ОГ.

Управление отсечкой подачи воздуха

На автомобилях с кодом комплектации (MF4) блок управления CDI выполняет функцию активации клапана отсечки входящего воздуха (Y83).

Функция управления отключением

 компрессора кондиционераВ автомобилях, оборудованных автоматической системой кондиционирования воздуха (код комплектации НН9), при частоте вращения двигателя менее 2000 об/мин и при интенсивности сигнала датчика педали акселератора более 95\% блок управления CDI временно отключает питание компрессора кондиционера.

Система подачи топлива

Функциональная схема управления двигателем

Блок управления CDI анализирует состояние системы по совокупности сигналов, поступающих от датчиков системы. Ниже приведена схема, на которой изображены сигналы, поступающие к блоку управления от датчиков системы и сигналы управления, передаваемые исполнительным устройствам.
На основе информации, поступающей от датчиков системы и алгоритма управления, заложенного в памяти, блок вырабатывает управляющие воздействия (в виде импульСов, постоянных напряжений) и информационные сообщения (сигналы на комбинацию приборов, на диагностический разъем и т.д.). Эти сигналы поступают к исполнительным механизмам и к элементам информационного интерфейса как по простой электропроводке, так и по мультиплексной сети (CAN-C).

А1. Комбинация приборов
B2/5. Датчик массы входящего воздуха
B2/5b1. Датчик температуры входящего воздуха
B4/6. Датчик давления в ТКВД
B5/1. Датчик давления наддува
B6/1. Датчик положения распределительного вала
B11/4. Датчик температуры ОЖ
B17/9. Датчик температуры нагнетаемого воздуха
B19/9. Датчик температуры or
B28/5. Выходной датчик давления в воздушном фильтре
B28/8. Датчик перепада давления OГ на сажевом фильтре (DPF)
B37. Датчик положения педали акселератора

В40. Комбинированный датчик состояния масла
B50. Датчик температуры топлива
В60. Датчик обратного давления в выпускном тракте
G2. Генератор
G3/2. Входной датчик кислорода на преобразователе ОГ
K40/9k5. Реле стартера
K40/9k6. Реле топливоподкачивающего насоса
L5. Датчик положения коленчатого вала M1. Стартер
M3. Топливоподкачивающий насос
N2/7. Блок управления пассивной системой безопасности
N3/9. Блок управления системой CDI

N14/2. Выходной каскад питания свечей накаливания
N15/3. Блок управления системой ETC (для АКПП)
N15/5. Блок управления электронным селектором передач (для АКПП) N30/4. Блок управления системой ESP N73/ Блок управление системой EIS (EZS) R9. Свечи накаливания
$\mathrm{X} 11 / 4$. Внешний разъем мультиплексной сети Y74. Клапан регулирования давления в ТКВД Y76/1-Y76/4. Топливные форсунки 1-4 цилиндров
Ү83. Клапан отсечки подачи топлива Y94. Клапан регулирования количества топлива
CAN. Мультиплексная сеть (CAN-C)

Элементы системы управления двигателем

Электронный блок управления Электронный блок управления (ЭБУ). Мультиплексная сеть CAN C.

Датчики

Датчик положения коленчатого вала.
Датчик положения распределительного вала.
Датчик массы входящего воздуха.
Датчик температуры входящего воздуха.
Датчик температуры охлаждающей жидкости.
Датчик давления наддува.
Датчик давления масла.
Датчик положения педали акселератора.
Датчик-переключатель положения педали сцепления.

Датчик давления в ТКВД.
Датчик температуры топлива.

Исполнительные устройства

Клапан предварительного подогрева топлива.

Топливный фильтр.
Топливоподкачивающий насос.
Клапан прекращения подачи топлива.
Топливный насос высокого давления.
Клапан прекращения подачи топлива в ТНВД.

Топливный коллектор высокого давления (ТКВД).

Клапан регулирования давления в ТКВД.
Форсунки.
Органы управления.
Переключатель режима поддержания скорости движения.

Электронный блок управления двигателем (ЭБУ СDI)

Блок управления CDI ($\mathrm{N} 3 / 9$) управляет следующими функциями.

- Подача топлива.

- Управление свечами накаливания при пуске двигателя и при движении.
- Управление количеством подаваемого топлива при пуске двигателя и при движении.
- Управление эмиссией вредных веществ.
- Управление давлением наддува.
- Управлением остановкой компрессора (А9) кондиционера (при различных режимах работы для сохранения АКБ)
- Управление остановкой двигателя.
- Диагностика системы в соответствии со стандартом EOBD 2.

Блок управления осуществляет управление следующими элементами системы.

- Реле стартера (K40/9k5).
- Реле топливоподкачивающего насоса (K40/9k6).
- ТНВД (M41).
- Выходным каскадом управления свечами накаливания (N14/2).
- Вентиляционной линией нагревательного элемента (R39/1).
- Исполнительным приводом системы рециркуляции Or (Y27) для двигателей с кодами MF4 и MF8.
- Преобразователем системы управления давлением наддува ($\mathbf{Y} 31 / 5$).
- Клапаном управления давлением топлива (Y74).
- Топливной форсункой 1-го цилиндра (Y76y1).
- Топливной форсункой 2-го цилиндра (Y76y2)
- Топливной форсункой 3-го цилиндра (Y76y3)
- Топливной форсункой 4-го цилиндра (Y76y4)
- Отсекающим клапаном системы подачи воздуха (Y83), для двигателей с кодом MF4.
- Клапаном управления количеством подачи топлива (Y94).

В процессе работы системы блок управления получает информацию от следующих элементов системы.

- Датчика расхода воздуха (по массе) (B2/5) для двигателей с кодом MF4.
- Датчика давления топлива в ТКВД (B4/6).
- Датчика давления наддува (B5/1).
- Датчика положения распределительного вала (B6/1).
- Датчика температуры ОЖ (B11/4).
- Датчика температуры нагнетаемого воздуха (B17/9).
- Датчика давления на выходе из воздушного фильтра (B28/5).
- Датчика педали акселератора (B37/3).
- Универсального датчика состояния масла (B40).
- Датчика температуры топлива (B50).
- Датчика уровня воды в топливном фильтре (B76) для двигателей с кодом KL5 (топливный фильтр с отделителем влаги).
- Датчика кислорода (O2) TWC (KAT) (G3/2) для двигателей с кодом MF4.
- Датчика положения коленчатого вала (L5).
- Датчика переключателя положения педали сцепления ($\mathbf{S 4 0} / 3$) для автомобилей с МКПП 716.6.

Мультиплексная сеть CAN C осуществляет связь блока CDI (N3/9) со следующими системами и их элементами.

- Комбинацией приборов (A1).
- Блоком управления подушками безопасности SRS (N2/10).
- Блоком управления системой ETC (EGS) (N15/3) для автомобилей с АКПП 722.6.
- Блоком управления электронным селектором передач ($\mathrm{N} 15 / 5$) для автомобилей с АКПП 722.6.
- Блоком управления системой ограничения тягового усилия ESP (N30/4).
- Блоком управления системой кондиционирования воздуха EIS (EZS) (N73).
Системы контроля достоверности входных/ выходных сигналов ЭБУ CDI (N3/9) в случае, если какой-либо сигнал не принят по признаку недостоверности, формируют заменяющие сигналы в аварийном режиме.

Датчик положения

 педали акселератора (B37)
Назначение

Регистрация положения педали акселератора и передача информации в блок управления двигателем.

Конструкция

Датчик положения педали акселератора содержит два датчика Холла, два магнита, электронную схему и возвратную пружину.

Принцип действия

Изменение направления магнитного потока (вектор B) вызывает изменение напряжения сигнала.

Сигнал о положении педали передается в дублированном виде с целью компенсации возможных ошибок.

Датчик положения педали акселератора В. Направление магнитного потока Мин. Положение отпущенной педали акселератора
Макс. Положение заданной полной мощности Н. Датчик Холла

VN 9.010

Датчик положения коленчатого вала (L5)

Назначение

Определение положения коленчатого вала в данный момент времени и передача сигнала в блок управления двигателем.

Размещение и устройство

Датчик положения коленчатого вала относится к бесконтактным датчикам. Размещен на блоке цилиндров таким образом, чтобы между зубьями маховика и датчиком L5 имелся воздушный зазор.

Пропуск 2 зубьев на маховике обеспечивает наличие начальной метки в составе сигнала.

Угловое расстояние между меткой и ВМТ 1 -го или 4-го цилиндра составляет 108°.

Конструкция, электрическая схема и выходной сигнал датчика положения коленчатого вала
a. Передний край зуба
b. Задний край зуба
c. Пропущенный зуб
U. Выходной сигнал датчика (B)

L5. Датчик положения коленчатого вала

VN 9.012

Моменты затяжки резьбовых соединений

Винт крепления датчика положения коленчатого вала к блоку цилиндров - 9 Нм.

Датчик положения распределительного вала (B6/1)

Назначение

Определение бесконтактным способом положения распределительного вала.

Функционирование

Сигналы частоты вращения (синхронизации) двигателя

OT1. BMT 1-го цилиндра OT2. BMT 2-го цилиндра ОТ3. ВМТ 3-го цилиндра OT4. BMT 4-го цилиндра
a. Угол поворота коленчатого вала
b. Сигнал датчика положения коленчатого вала
c. Сигнал датчика положения

распределительного вала
VN 9.013

Устройство

Датчик положения распределительного вала (B6/1) содержит магнит (2) и электронную схему (5), которая анализирует сигнал датчика Холла.

Функционирование

Сигнал датчика положения распределительного вала и сигнал датчика положения коленчатого вала изображены на рис. VN 9.012 и VN 9.013, соответственно.

Снятие и установка датчика положения распределительного вала

1. Датчик положения распределительного вала
2. Разъем
3. Кольцо уплотнительное

VN 9.015

Момент затяжки винта крепления датчика положения распределительного вала к крышке блока цилиндров - $\mathbf{1 1} \mathrm{Hm}$.

Датчик температуры охлаждающей жидкости (B11/4)

Назначение

Определение температуры охлаждающей жидкости и передача сигнала в блок управления двигателем.

Размещение

1. Датчик давления в ТКВД (B4/6)
2. Датчик температуры охлаждающей жидкости (B11/4) VN 9.016

Конструкция

Датчик температуры охлаждающей жидкости
1,2. Контакты электрического разъема
3. Датчик температуры охлаждающей жидкости B11/4

VN 9.018

Функционирование

Сопротивление резистора с отрицательным температурнымкоэффициентом сопротивления обратно пропорционально температуре:
$20^{\circ} \mathrm{C}$ примерно соответствуют сопротивлению 3087 Ом $\pm 5 \%$,
$80^{\circ} \mathrm{C}$ примерно соответствуют сопротивлению 319 Ом $\pm 5 \%$.

Датчик температуры топлива (B50)

Назначение

Датчик температуры топлива (B50) размещен в ТНВД (M41). Если температура топлива слишком велика, то давление в ТКВД снижается. Таким образом, снижается количество топлива, проходящее через клапан регулирования давления в ТКВД (Y74) и, соответственно, снижается температура топлива.

Датчик температуры топлива

1. Датчик температуры топлива B50
2. THBД M41
3. Клапан регулирования

количества топлива Y94
VN 9.019

Конструкция

Датчик температуры топлива B50 сконструирован на основе резистора с отрицательным температурным коэффициентом сопротивления.

Функционирование

Сопротивление резистора с отрицательным температурным коэффициентом сопротивления обратно пропорционально температуре.

Датчик массы входящего воздуха ($\mathrm{B} 2 / 5$), объединенный с датчиком температуры входящего воздуха (B2/5b1)
 воздуха B2/5

VN 9.020

Назначение

Датчик массы и температуры входящего воздуха предназначен для выдачи в блок управления двигателем сигнала о количестве и температуре входящего воздуха.

Конструкция

Датчик массы входящего воздуха:

1. Датчик типа подогреваемой пленки
2. Измерительный канал
3. Защитная сетка
4. Kopryc
5. Корпус электронной схемы
6. Электрический разъем
7. Датчик температуры входящего воздуха B2/5b1
8. Датчик массы входящего воздуха B2/5

VN 9.021

Функционирование

Электронная схема в датчике массы входящего воздуха управляет температурой подогревающего резистора RH, которая превышает на $160^{\circ} \mathrm{C}$ температуру входящего воздуха, измеряемую при помощи терморезистора RL. Температура подогревающего резистора RH измеряется при помощи измерительного резистора RS. Если температура изменяется вследствие изменения массы проходящего воздуха, то электронная схема 5 регулирует напряжение, питающее подогревающий резистор RH таким образом, чтобы компенсировать изменение его температуры. Это компенсирующее напряжение используется для передачи в блок управления двигателем в качестве сигнала датчика.

1. Датчик массы входящего воздуха $B 2 / 5$
2. Датчик расхода с подогреваемой пленкой
3. Корпус электронной схемы,
4. Подогревающий резистор RH
5. Терморезистор, измеряющий температуру входящего воздуха RL
6. Резистор, измеряющий температуру подогревающего резистора RS

VN 9.022

Датчик температуры нагнетаемого воздуха (В17/9)

1. Датчик температуры нагнетаемого воздуха B17/9

VN 9.023

Назначение

Определение температуры нагнетаемого воздуха и передача сигнала в блок управления двигателем.

Конструкция

Датчик температуры нагнетаемого воздуха 1. Kopryc
2. Резистор с отрицательным коэффициентом сопротивления
3. Контакты электрического разъема
4. Фиксатор разъема
5. Уплотнитель

VN 9.024

Датчик давления наддува (B5/1)

Назначение

Определение давления воздуха во впускном коллекторе и передача сигнала в блок управления двигателем (N3/9).

Конструкция

Датчик давления наддува содержит пьезоэлектрические объемные резисторы, которые расположены на измерительной диафрагме и соединены по схеме измерительного моста.

Функционирование

Изменение давления во впускном коллекторе вызывает изменение формы измерительной диафрагмы, которое вызывает изменение сопротивления элементов измерительного моста. Выходной сигнал представляет собой напряжение, пропорциональное изменениям давления во впускном коллекторе.

Датчик давления топлива в ТКВД (B4/6)

Назначение

Измерение текущего значения давления в ТКВД и передача сигнала в блок управления двигателем.

Конструкция

Датчик давления топлива в ТКВД содержит диафрагму, изготовленную из высокопрочной пружинной стали и соединенную с полуароводниковым (поликристаллический кремний) тензометрическим датчиком.

Функционирование

Датчик давления топлива в ТКВД измеряет текущее значение давления в ТКВД и передает сигнал в виде пропорционального давлению напряжения в блок управления двигателем $\mathrm{N} 3 / 9$.
На основании сигнала датчика блок управления двигателем вырабатывает управляющий сигнал, передаваемый клапану регулирования давления в ТКВД.

Датчик состояния масла (B40)

Назначение

Датчик состояния масла предназначен для контроля температуры, уровня и степени загрязненности масла.

При недопустимом понижении уровня масла сигнал передается на комбинацию приборов для информирования водителя.

Функционирование

Суммарный сигнал датчика представляет собой повторяющуюся тройку широтномодулированных прямоугольных импуль$\cos \mathbf{A}, \mathbf{B}$ и С высотой 5 Вольт. Длительность каждого из импупьсов выражает состояние контролируемого параметра. Длительность периода Т, отведенного для каждого импульса, составляет постоянную величину. Процентное соотношение длительности импульса и длительности периода $Т$ является информационным кодом сигнала (рис. VN 9.030).

Размещение
 подаваемого топлива

VN 9.027

Момент затяжки датчика давления в резьбовом отверстии ТКВД: $\mathbf{2 0 - 2 2} \mathbf{~ H м . ~}$

Размещение

Датчик состояния масла $\mathbf{B 4 0}$ расположен на левой стенке поддона масляного картера.

1. Комбинированный датчик уровня, температуры и состояния масла B40
2. Винт

VN 9.028

Конструкция

Датчик состояния масла. Конструкция:

1. Датчик температуры масла
2. Датчик состояния масла В10
h. Измерительный интервал уровня масла составляет 80 MM ($\pm 40 \mathrm{mM}$), погрешность измерения составляет ± 3 мм
Мин. Нижний предел измерительного интервала уровня масла
Макс. Верхний предел измерительного интервала уровня масла

Сигналы датчика состояния масла

1. Соотношение длительности импульса и длительности периода Т находится в пределах от 20% до 80% :
A. Температура масла находится в пределах нормы
В. Уровень масла находится в пределах нормы
C. Степень загрязненности масла находится в пределах нормы
2. Соотношение длительности импульса и длительности периода Т более 80\%:
A. Температура масла выше $+160^{\circ} \mathrm{C}$
В. Уровень масла более, чем на 80 мм превышает норму
C. Степень загрязненности масла соответствует качественному маслу
3. Соотношение длительности импульса и длительности периода Т менее 20% :
A. Температура масла ниже $-40^{\circ} \mathrm{C}$,
B. Уровень масла ниже минимальной отметки
С. Степень загрязненности масла высокая

VN 9.030

Информация датчика передается в блок управления двигателем $\mathbf{N} 3 / 9$, где преобразуется в формат, пригодный для передачи по мультиплексной сети CAN.
Неисправности, возникающие в датчике, определяются блоком управления двигателем N3/9 и записываются в память отказов.

Моменты затяжки резьбовых соединений

Винт крепления датчика уровня масла к поддону масляного картера - 14 Нм.

Винт или гайка крепления кронштейна стабилизатора -30 Hм.

Входной датчик кислорода на преобразователе ОГ (G3/2)

Датчик кислорода предназначен для анализа ОГ с целью определения фактического соотношения воздух/топливо и коррекции состава топливной смеси в цилиндрах.

В основу работы датчика положено измерение так называемого потенциала Нернста, который пропорционален концентрации ионов кислорода в контролируемой газовой среде.
Чувствительный элемент датчика кислорода (G3/2) состоит из комбинации элемента Нернста и (41a) диффузного элемента (41b) (ионного насоса), который перемещает ионы от катода к аноду. Для повышения точности измерений производится

сравнение концентрации кислорода в окружающем воздухе. Для этого в датчике имеется воздушный канал (41d).
Датчик обеспечивает удовлетворительную точность измерений соотношения λ в пределах $(0,7<\lambda<4,0)$.

Условием стабильной работы датчика является постоянство температуры. Для этого в датчике имеется подогреватель, который постоянно поддерживает температуру датчика около $750^{\circ} \mathrm{C}$.

Соотношение $\lambda=1$ соответствует напряжению на элементе Нернста $U=450$ мВ.

Схема датчика кислорода
48. Управляющая схема 81. Поток ОГ

41а. Элемент Нернста
41b. Ионный насос
41c. Диффузионный зазор
41d. Воздушный канал
41e. Подогреватель
IP. Ток ионного насоса
UH. Напряжение подогревателя
Uref. Сравнительное напряжение VN 9.031

Зависимость тока ионного насоса от λ
Сигнал ионгного насоса (IP)
IP. Ток ионного насоса (MA)
VN 9.032

Датчик давления на выходе из воздушного фильтра (B28/5)

Датчик (B28/5) давления на выходе из воздушного фильтра измеряет указанное давление и передает сигнал в блок управления CDI (N3/9).

Если разрежение на выходе из воздушного фильтра слишком велико, то блок управления CDI (N3/9) формирует сигнал зажигания светового индикатора комбинации приборов (А1е27) «Воздушный фильтр загрязнен".
 фильтра (B28/5)

VN 9.034

Давлениевоздухавоздействует надиафрагму (C). При этом пьезорезисторы изменяют свое сопротивление. Изменение выходного напряжения датчика регистрируется блоком управления CDI (N3/9).

Исполнительные устройства системы управления CDI

Ниже приведено описание регулирующих устройств системы управления CDI. В это описание не включены устройства; описание которых дано в разделах "Система подачи топлива» и «Система подачи воздуха».

Свечи накаливания (R9)

Камера сгорания предварительно нагревается при помощи свечей накаливания, питаемых от выходного каскада системы предпускового нагрева. Длительность предпускового нагрева зависит от температуры охлаждающей жидкости. Когда ключ устанавливается в положение 2, блок управления CDI (6) выдает команду активаций выходного каскада предлускового нагрева (4) и включения светового индикатора предпускового нагрева, расположенного на комбинации приборов. Длительность предпускового нагрева рассчитывается блоком управления двигателем.
Свечи накаливания состоят из корпуса с резьбой и нагревательного элемента, встроенного в корпус.
При включении свечи накаливания через нее идет ток 30 А. При этом нагревательная спираль, раскаляясь, нагревает свечу. Спираль управления при нагреве ограничи-

вает ток до 15-25 А и ограничивает температуру разогрева свечи, что способствует повышению срока службы свечей.

2. Свеча накаливания 1 -го цилиндра R9/1

VN 9.036

Размещение и подключение свечей накаливания в двигателе

Клапан регулирования давления в ТКВД (Y74)

Клапан регулирования давления в ТКВД (Y74) совместно с клапаном регулирования подачи топлива (Y94) поддерживает давление на уровне, задаваемом блоком управления CDI (N3/9).
Клапан ввинчен в задней части ТКВД.

Конструкция клапана

1. Вход топлива под высоким давлением 2. Отверстия сброса топлива в линию возврата
2. Клапан регулирования давления в TKBД Y74

VN 9.040

Функционирование

Принцип действия показан на рис. VN 9.041

Клапан регулирования давления в ТКВД Ү74 Принцип действия

1. Вход топлива
2. Соленоид

a. Усилие, развиваемое соленоидом b. Усилие, развиваемое пружиной c. Седло шарикового клапана

VN 9.041

Клапан регулирования подачи топлива в ТНВД

Клапан регулирования подачи топлива (Y94) совместно с клапаном регулирования давления в ТКВД (Y74) регулирует давление топлива в ТКВД (M41) и производит отсечку подачи топлива к плунжерам ТНВД при остановке двигателя.

Клапан регулирования подачи топлива к ТНВД закреплен на фланце ТНВД.

1. Клапан регулрования подачи топлива $Y 94$

VN 9.042

Функционирование клапана

Топливо, подаваемое топливоподкачивающим насосом, поступает к фланцу ТНВД, проходит в его каналах через датчик температуры топлива (1) к клапану регулирования подачи топлива (2) и к клапану сброса давления топлива (23).
Клапан регулирования подачи топлива (2) изменяет поток топлива в соответствии с сигналами, подаваемыми блоком управления $\mathbf{C D I}(\mathrm{N} 3 / 9)$.

1. Датчик температуры топлива B50
2. Клапан регулирования подачи топлива Y 94
3. Канал высокого давления
4. Кулачковый диск
5. Эксцентриковый вал
6. Подача топлива к контуру высокого давления
7. Пружина клапана
8. Плунжеры
9. Пружины плунжеров
10. Шариковый клапан

VN 9.044

Привод клапана рециркуляции отработавших газов (EGR)

Привод клапана рециркуляции отработавших газов предназначен для открытия и закрытия клапана рециркуляции отработавших газов.

Этот клапан регулирует добавление к входящему воздуху некоторого количества ОГ.
Это нужно для снижения температуры горения топлива в цилищдрах и уменьшения содержания окислов азота в отработавших газах.
Количество ОГ, добавляемых к воздуху, определяется алгоритмом, заложенным в блок управления CDI (N3/9).

Клапан рециркуляции OГ расположен в левой задней части впускного коллектора.

Система курсовой устойчивости ESP

В современном автомобиле, в частности в автомобилях Vito Viano, применяется современная система обеспечения устойчивости автомобиля в различных ситуациях, возникающих при движении. Эта система называется системой курсовой устойчивости и обозначается аббревиатурой ESP (Electronic stability program).

Система ESP базируется на чувствительных элементах (датчиках) и исполнительных механизмах обычной антиблокировочной системы тормозов (ABS), а также на элементах системы управления двигателем.
Основные функции общей системы курсовой устойчивости следующие.

- Функция стабилизации автомобиля на траектории движения (ESP) является наиболее приоритетной по воздействию на автомобиль по сравнению с другими функциями общей системы.
Система ESP обеспечивает стабилизацию автомобиля на траектории движения при прохождении поворотов и стабилизацию прямолинейного движения автомобиля при наличии отклонений от курса.
- Функция обычной антиблокировочной системы ABS (Antilock brake system), которая предназначена для предотвращения блокировки колес в процессе торможения автомобиля. В этом случае при торможении датчики частоты вращения всех колес измеряют и сопоставляют интенсивность замедления вращения колес. Система ослабляет тормозное усилие в той ветви гидравлической системы тормозов, которой соответствует колесо с наиболее интенсивным замедлением.
- Функция антибуксовочной системы ASR (Acceleration slip regulation) управляет ведущими колесами. При наличии ускоренного вращения одного из ведущих колес при ускорении система производит торможение этого колеса, подавая точно рассчитанное давление в тормозной цилиндр.
- Функция регулирования тягового усилия
ETS (Electronic traction system) ETS (Electronic traction system).
- Функция регулирования принудительного холостого хода (торможения двигателем) на скользкой дороге MSR (Engine braking regulation). Регулирование производится средствами системы управления двигателем
(CDI) путем уменьшения тормозного момента, передающегося от двигателя к ведущим колесам. Эта подсистема предотвращает возникновение скольжения ведущих колес при отпускании педали акселератора.
- Функция электронного распределения тормозного усилия EBV (Electronic brake force distribution). Выполняя эту функцию, система распределяет тормозное усилие между передними и задними колесами. Действие системы аналогично действию ABS. При этом в режиме EBV система реагирует на изменение частоты вращения колес раньше, чем в режиме ABS. Необходимость в наличии такой функции продиктована различной интенсивностью замедления передних и задних колес при недостаточной загрузке автомобиля.
- Функция увеличения тормозного усилия при экстренном торможении BAS (Brake Assist system). При интенсивном (резком) нажатии на педаль тормоза, которое система оценивает как желание водителя затормозить как можно скорее, BAS увеличивает давление в тормозных цилиндрах (при одновременном контроле процесса торможения системой ABS).

Пример A

Недостаточная поворачиваемость автомобиля в левом повороте.
При этом передние колеса выносит за пределы требуемой траектории в наружную сторону поворота.

Коррекция траектории производится точно рассчитанным торможением заднего левого колеса.

Пример B

Избыточная поворачиваемость автомобиля в левом повороте.

Увод задних колес в наружную сторону поворота.

Коррекция траектории производится точно рассчитанным торможением переднего правого колеса.

Взаимодействие систем

Функция ESP является наиболее приоритетной функцией среди перечисленных вследствие того, что ее действие является наиболее универсальным. Это выражается в том, что для стабилизации автомобиля на траектории движения система в режиме ESP использует датчики и исполнительные механизмы всех перечисленных систем (ABS, ASR, MSR и EBV).

Для реализации заданных функций блок управления системой ESP (N30/4) принимает в ка'честье вжодящей информации следующие сигналы.

Для определения намерений водителя:

- сигнал датчика поворота руля (B24/8);
- сигнал датчика положения педали акселератора (B37/3).
Для определения реального поведения автомобиля на дороге:
- сигнал датчика рыскания и поперечных ускорений (B24/15);
- сигнал датчика давления в тормозной системе (B34);
- сигналы датчиков частоты вращения колес:
- переднего левого (L6/1);
- переднего правого (L6/2);
- заднего левого (L6/3);
- заднего правого (L6/4).

Блок управления ESP (N30/4) выполняет в качестве процессора, реализующего заранее заложенные алгоритмы, следующие функции.

- Функция ESP.
- Функция ABS.
- Функция системы регулирования тягового усилия (ETS).
- Функция системы увеличения давления в тормозах при экстренном торможении (BAS).
- Функция регулирования ускорения на скользкой дороге (ASR).
- Функция распределения тормозного усилия между осями (EBV).

По сути, система ESP является расширенной системой, которая кроме собственных специфических функций выполняет те функции, которые ранее выполняли более простые обособленные системы.
Для этого блок управления $\operatorname{ESP}(\mathbf{N} 30 / 4)$ взаимодействует как с системой управления тормозами, так и с системой управления двигателем (CDI) посредством мультиплексной сети CAN C, ответственной за управление двигателем.

Размещение компонентов системы ABS (для автомобилей, не оборудованных системой ESP)
Выше была описана система курсовой устойчивости ESP. В данном разделе описаны элементы отдельной системы ABS.

Следует заметить, что в настоящее время компания "Даймлер-Крайслер АГ» комплектует автомобили преимущественно системой ESP.
Отдельная система ABS считается устаревшей.

8. 4-контактный выключатель стоп-сигнала B18

VN 9.049

9. Датчик частоты вращения переднего колеса B79

VN 9.050

10. Датчик частоты вращения заднего колеса B81

VN 9.051

Датчики

Датчики частоты вращения колес
При вращении ротора (5) вследствие взаимодействия магнитных полей в катушке (3) индуктируются импульсы напряжения, частота следования которых жестко связана с частотой вращения ротора.

1. Соединительный провод
2. Постоянный магнит
3. Катушка
4. Полюсный наконечник
5. Ротор

VN 9.055

Датчик поперечных ускорений

В датчике ускорения (B24/2) находится электронная микросхема (a) для регистрации сигнала. Принцип измерения датчика ускорения основан на действии упру-го-инерционной системы. В электросхему встроен датчик Холла (b).
Над ним расположен упруго-инерционный элемент (d, c). При отклонении этого элемента над датчиком Холла вправо или влево (b) создается сигнал.

Поперечные силы перемещают упругоинерционный элемент (магнит) в определенное положение. В результате этого меняется его положение относительно датчика Холла, что, в свою очередь, ведет к изменению сигнала по напряжению.

a. Электронная микросхема (гибридная)
b. Датчик Холла
c. Упруго-инерционный элемент (магниты)
d. Измерительная пружина
e. Демпферная пластина

VN 9.056

Датчик угловой скорости (рыскания)

Полый стальной цилиндр (чувствительный элемент, b) под воздействием пьезоэлементов начинает вибрировать с определенной частотой. 4 пары пьезоэлементов расположены на цилиндре друг против друга. В зависимости от вращательного движения автомобиля происходит смещение параметров возникающей между пьезоэлементами вибрации. Эти смещения служат основой для определения угловой скорости автомобиля.

a. Kорпус
b. Чувствительный элемент
c. Гибридная схема
d. Гибкая печатная плата
е. Крышка

Датчик угла поворота рулевого колеса

Датчик угла поворота рулевого колеса ($\mathrm{B} 24 / 8$) расположен на рулевой колонке. Сигнал датчика пропорционален углу поворота рулевого колеса. Этот сигнал используется для расчета требуемой траектории движения автомобиля. Сопоставление сигнала этого датчика с сигналами датчиков поперечных ускорения и рыскания, а также с данными о скорости автомобиля и отяговом усилии двигателя дает возможность выявить отклонение автомобиля от заданного положения на дороге в любой момент времени.

Гидравлический блок регулирования тормозных усилий

Функционирование системы ESP

Режим регулирования системы ESP

Блок управления ESP выполняет тормозное регулирующее воздействие для регулировки стабильности движения автомобиля.

В начале регулирования системы ESP neреключающие электромагнитные клапаны (у18, у19) приводятся в положение «блокировки" (закрытия), и выполняется активация блока нагнетательных/откачивающих насосов (ml). Начиная со скорости $>20 \mathrm{~km} / 4$ (диапазон начала движения) активируется (открывается) электромагнитный клапан BAS (A7/7y1) в усилителе тормозного привода ($\mathbf{A} / 7 / 7$). К задней стороне мембран в усилителе тормозного привода подводится атмосферное давление, в результате чего в контурах тормозного привода создается давление ок. 5 бар в качестве предварительного давления на стороне впуска блока нагнетательных/откачивающих насосов.

Впускной электромагнитный клапан (у22) открывается только в процессе нагнетания давления. При этом самовсасывающий нагнетательный/откачивающий насос (p1) через впускной электромагнитный клапан (у22) и главный тормозной цилиндр всасывает тормозную жидкость из заправочного бачка.

Для ограничения высокого давления в переключающий электромагнитный клапан (у18) интегрирован редукционный клапан (около 170 бар).

Режим регулирования системы ESP: поддержание давления

Приведенная в примере процедура регулирования положения клапанов относится к тормозному механизму VR (переднего правого колеса).

Если для стабилизации движения отпадает необходимость в более интенсивном тормозном регулирующем воздействии, то активируется режим поддержания давления в рамках регулирования системы ESP.

Впускной электромагнитный клапан (у22) закрывается.
Благодаря этому повышение давления в колесном тормозном механизме с помощью нагнетательного/откачивающего насоса (p1) невозможно.

Режим регулирования системы ESP: сброс давления
Приведенная в примере процедура регулирования положения клапанов относится к тормозному механизму VR (переднего правого колеса),

Если необходимое для стабилизации движения тормозное давление чрезмерно высокое, то включается режим регулирования ESP "снижение давления"

Процесс снижения давления начинается при открытии переключающего электромагнитного клапана (у18). Электромагнитный клапан (у8) остается открытым, а электромагнитный клапан (у9) - закрытым.

Перетекающая обратно тормозная жидкость проходит через нагнетательно-откачивающий насос (p1), через переключающий электромагнитный клапан (у18) и далее через главный тормозной цилиндр в заправочный бачок тормозной жидкости.
В этих режимах регулирования самовсасывающий нагнетательный/откачивающий на$\operatorname{coc}(\mathbf{p 1})$ также активирован.

Система экстренного торможения Brake Assist System (BAS): функциональное описание

Исследования на тренажере с привлечением обычных водителей и на испытательной трассе показали, что большинство водителей в случае экстренного торможения, пре*де всего, в начале процесса торможения нажимают педаль быстро, но недостаточно сильно.

Следует различать:

- замедленное торможение - в начале процесса торможения водитель прикладывает недостаточную силу для нажатия педали и увеличивает ее медленно;
- недостаточное торможение - на протяжении всего процесса торможения водитель недостаточно сильно нажимает педаль тормоза.

Для оптимизации процесса торможения была разработана система Brake Assist (система экстренного торможения).

Назначение

Brake Assist System (BAS, система экстренного торможения) является активной системой безопасности. Она приводится в действие, когда в экстренной ситуации водитель резко нажимает педаль тормоза. На основе скорости нажатия педали водителем система определяет наличие ситуации экстренного торможения. В этом случае электромагнитный клапан в усилителе тормозного привода открывается - и усилитель прилагает полную силу для торможения.

При отпускании водителем педали тормоза система распознает уменьшение степени нажатия на педаль и вновь закрывает электромагнитный клапан.

Преимущества

- Благодаря оптимальному замедлению снижает риск ДТП в экстренных ситуациях и тем самым оказывает существенную поддержку в управлении автомобилем.
- Поддерживает действие системы ABS, обеспечивая максимально возможное тормозное усилие.
- При включении системы BAS действие ABS не нарушается.
- Значительно сокращает тормозной путь при замедленном или недостаточном торможении.

a. Недостаточное торможение
b. Замедленное торможение
c. Tорможение в режиме BAS

VN 9.064

Обычный режим BAS: функциональное описание

Процесс торможения в обычном режиме (без участия системы BAS)

Усилитель тормозного привода BAS (A7/7) по вакуумному трубопроводу постоянно обеспечивается разрежением от впускного коллектора или (на дизельном двигателе) от вакуумного насоса. При ненажатой педали тормоза на обеих сторонах мембран создается одинаковое разрежение. Нажимная пружина удерживает тарелку мембраны в исходном положении.

В процессе торможения по каналу к задней стороне мембран подводится наружный воздух. Между передней и задней камерой усилителя возникает возрастающая в процессе торможения разность давления, которая действует в направлении главного тормозного цилиндра и тем самым увеличивает усилие нажатия педали.

Иллюстрация: подтормаживание
A7/7. Усилитель тормозного привода BAS
s1. Разъединительный выключатель BAS
y1. Электромагнитный клапан BAS (распределительный клапан)
a. Атмосферное давление
b. Уменьшенное разрежение
c. Разрежение

VN 9.065

Режим нагнетания давления (BAS): функциональное описание

Нагнетание давления (BAS)

При выполнении условий активации режима торможения BAS электромагнитный клапан BAS (y1) открыт. На обратной стороне yплотнителя штока - атмосферное давление. В результате разности давления между передней и задней стенками мембраны происходит максимальное увеличение тормозного давления.

Иллюстрация: подтормаживание
A7/7. Усилитель тормозного привода BAS
s1. Разъединительный выключатель BAS
y1. Электромагнитный клапан BAS
(распределительный клапан)
а. Атмосферное давление
c. Разрежение

VN 9.066

Режим сброса давления (BAS): функциональное описание

Разъединительный выключатель BAS (s1) переключается в пассивное состояние. Электромагнитный клапан (y1) выключается и создает тормозное давление, соответствующее положению педали тормоза.

Иллюстрация: подтормаживание
A7/7. Усилитель тормозного привода BAS
s1. Разъединительный выключатель BAS
y1. Электромагнитный клапан BAS
(распределительный клапан)
a. Атмосферное давление
c. Разрежение

VN 9.067

Система контроля за проведением ТО и состояния автомобиля (ASSYST)

Данная система контролирует своезременность проведения ТО автомобиля как по временным интервалам, так и по пройденной дистанции между ТО в зависимости от условий эксплуатации автомобиля.

Кроме того система может контролировать состояние масла в двигателе (см. раздел "Датчики").

Функции системы ASSYST

Функция определения остаточного пробега до ТО

Пробег автомобиля между ТО разделяется на две дистанции:

- начальный пробег;
- пробег, оставшийся до очередного TO.

Под начальным пробегом понимают минимальную дистанцию, которую может пройти автомобиль до следующего ТО. Начальный пробег зависит от следующих факторов.

- Количества залитого масла при замене.
- Обобщенных качественных факторов (стиль вождения, условия эксплуатации в данной стране). Эти факторы предварительно устанавливаются в систему на предприятии производителе и могут быть изменены при помощи диагностической системы STAR DIAGNOSIS. Эти показатели не зависят от конкретных условий (напр. стиль вождения).

Остаточный пробег до ТО

Непосредственно после замены масла остаточный пробег равен начальному, если при замене масла было залито номинальное его количество. Остаточный пробег отсчитывается от текущего показания одометра до показания, которое должно быть при следующем ТО.
Допустимый пробег между ТО равен остаточному пробегу, который индицируется сразу после замены масла. Максимально возможный пробег не должен превышать начального пробега более чем вдвое (нежелательный, но допустимый запас пробега).
Остаточный пробег зависит от ряда факторов.

- Начального пробега.
- Реальных условий вождения (количество холодных пусков, количество превышений частоты вращения двигателя, количество поездок на короткие дистанции, количество поездок с буксировкой прицепа).

Источниками информации для системы ASSYST являются следующие системы и устройства.

- Блок управления CDI (N3/9 или N3/10, $\mathrm{N} 3 / 20, \mathrm{~N} 3 / 26$, в зависимости от модели двигателя) дает информацию о режимах работы двигателя.
- Система ESP дает информацию о скоростном режиме, о величине пробега (датчики ABS).
- Датчик состояния масла (B40) дает комплексную информацию о количестве, температуре и степени загрязненности масла продуктами его окисления и износа механизма.
- Датчик температуры ОЖ, позволяющий уточнять режимы эксплуатации двигателя.

Блок-схема системы ASSYST

Функция определения времени, оставшегося до То

Для автомобилей с небольшим пробегом в течение года система ASSYST может определять не пробег, а время, оставшееся до очередного ТО.
Отсчет времени производится от момента замены масла. Начальное время определяется аналогично начальному пробегу и принимается равным 730 дням.

Оставшееся время в момент начала отсчета равно начальному времени.
Максимальное значение оставшегося времени колеблется от одного до двух лет.

Индикатор уровня и качества масла

На рисунках показан индикатор автомобиля модификации 2006 года (код комплектации JK3, спидометр с верхними делениями шкалы в км/час).

Система контроля давления в шинах

Система контроля давления в шинах предназначена для оперативного контроля в целях безопасности движения.
Контроль может производиться как по запросу водителя, так и в режиме периодического контроля давления с целью своевременного обнаружения утечки газа из шин.
Датчики давления устанавливаются на колесный диск.
Периодичность проверки давления обусловлена необходимостью экономить энергию в автономных источниках питания датчиков.
Индикация информации о давлении в шинах выводится на многофункциональный дисплей.

Установка датчика давления в колесо

1. Датчик давления в колесах

VN 9.071

Блок-схема системы контроля давления в шинах

10. СИСТЕМА ПАССИВНОЙ БЕЗОПАСНОСТИ

Дополнительная система пассивной безопасности предназначена для защиты людей, находящихся в автомобиле, при различных типах аварийной ситуации.
Система пассивной безопасности предназначена для сохранения жизни и здоровья людей, находящихся в автомобиле в момент столкновения.

Для этого используются ремни безопасности и специальные устройства - надувные подушки безопасности.
Суть работы подушек безопасности состоит в мгновенном, происходящем в точно определенный момент наполнении подушек негорючим и неядовитым газом. Подушки безопасности гасят силы инерции, воздействующие на наиболее уязвимые части тела.

Внимание!

Система подушек безопасности является дополнительной системой кремням безопасности. Если во время аварии ремни безопасности не пристегнуты, то травмы, полученные людьми, находящимися в автомобиле, при срабатывании подушек безопасности, могут быть не менее тяжелыми, чем без применения подушек безопасности.

Следует помнить особенность подушек безопасности.

Для того чтобы спасти человеку жизнь применяется мгновенное, практически взрывообразное наполнение оболочек подушек. Это действие, рассчитанное на определенное положение тела и происходящее только в аварийной ситуации, может нанести человеку тяжелые травмы, вплоть до смертельных, при несвоевременном срабатывании.
Поэтому составители рекомендуют владельцам автомобилей не заниматься самостоятельным ремонтом системы пассивной безопасности.

Сведения, приведенные в данном разделе, рассчитаны на то, чтобы дать понятие об устройстве и работе системы, а также для того, чтобы можно было безопасно произ-

водить работы по обслуживанию узлов и систем, связанных с описываемой системой.

Мы рекомендуем не производить никаких самостоятельных вмешательств в работу сложной и точно настроенной системы. Все диагностические и ремонтные работы мы рекомендуем производить в сети фирменных СТО специально обученным персоналом.
В зависимости от варианта комплектации автомобиль может быть укомплектован следующими устройствами.

- Устройство предварительного натяжения ремня безопасности (далее - УПН) водителя, приводимое в действие пиропатроном (R12/1).
- уПН ремня безопасности переднего пассажира (R12/2).
- Подушка безопасности переднего пассажира, приводимая в действие при помощи пиропатрона (R12/4).
- Подушка безопасности водителя, приводимая в действие при помощи пиропатрона (A45/1r1).
- Левая и правая подушки безопасности, защищающие голову водителя и переднего пассажира от повреждения при боковом ударе ($\mathbf{R 1 2 / 1 6}$) и ($\mathbf{R 1 2 / 1 7) \text {), соответствен- }}$ но (для автомобилей с кодом комплектации (SH9).
- Левая и правая подушки безопасности, защищающие грудную клетку водителя и переднего пассажира (R12/32) и (R12/33), соответственно (для автомобилей с кодом комплектации (SH7). Эти подушки расположены в спинках сидений.
Все подушки безопасности снабжены надписью SRS AIRBAG, нанесенной либо непосредственно на устройстве, либо в месте его установки.
К устройствам пассивной безопасности относятся контрольные переключатели, информирующие о факте пристегивания ремня безопасности. Эти переключатели расположены в пряжках ремней (S68/1) и (S68/2), соответственно.

Также на сиденье переднего пассажира имеется датчик (В48) присутствия пассажира (подушки безопасности автоматически включены и готовы к активации) или наличия детского сиденья (подушки безопасности автоматически выключены).
Этот датчик отсутствует в случае установки переднего двойного сиденья (коды комплектации S23 или SH4).
В случае деактивации подушки безопасности включается световой индикатор Airbag OFF (N72/1e1).
При сильном фронтальном ударе сигнал ускорения генерируется встроенным в блок управления SRS (N2/10) датчиком фронтального ускорения. При этом блок управления генерирует сигнал активации подушек безопасности и УПН ремней безопасности.
При ударе сзади или при не слишком сильном фронтальном ударе в действие приводятся только УПН.
Активация всех боковых подушек безопасности (для головы и для грудной клетки) производится на основе сигнала датчиков бокового столкновения (А53 - левый) и (A54 - правый).

При активации подушек безопасности и УПН блок управления SRS (N2/10) выдает сигнал о происшедшей аварии следующим устройствам.

- Через мультиплексную сеть (CAN-B) в электронный блок управления включением зажигания EIS (EZS) (N73), а оттуда сигнал передается через мультиплексную сеть (CAN-C) в блок управления CDI (N3/9) для выключения двигателя.
- Через мультиплексную сеть (CAN-B) к электронным блокам управления передними дверями (N69/1) и (N69/2) для обеспечения аварийного открытия дверей.
- В блок управления SAM (N10) для активации системы аварийной сигнализации. При этом аварийная сигнализация может быть выключена при помощи переключателя аварийной сигнализации (N72/1s6).

Блок-схема системы пассивной безопасности

A45/1. Контакт вращающегося контактного сочленения рулевой колонки (вкс)
A45/1r1. Пиропатрон подушки безопасности водителя A53. Левый датчик бокового столкновения
A54. Правый датчик бокового столкновения
В48. Датчик распознавания присутствия человека или наличия детского кресла на переднем правом сиденьи KI 15.KI 15r.Kl 31.N2/10. Блок управления srs
N3/9. Блок управления cdi
N10. Блок управления sam
N73. Блок управления включением зажигания eis (ezs) R12/1. Пиропатрон преднатяжителя ремня безопасности водителя etr (gus)
R12/2. Пиропатрон преднатяжителя ремня безопасности переднего пассажира etr (gus)
R12/4. Пиропатрон подушки безопасности переднего пассажира
R12/16. Пиропатрон левой верхней боковой подушки безопасности
R12/17. Пиропатрон правой верхней боковой подушки безопасности
R12/32. Пиропатрон левой боковой подушки безопасности (защита грудной клетки)
$\mathrm{R} 12 / 33$. Пиропатрон правой боковой подушки безопасности (защита грудной клетки)
$\mathrm{S} 68 / 1$. Выключатель, контролирующий застегивание ремня безопасности водителя
S68/2. Выключатель, контролирующий застегивание ремня безопасности переднего пассажира

VN 10.001

Блок-схема процессов, инициируемых при активации SRS

1. Аварийное открывание дверей
2.Аварийная сигнализация
2. Выключение двигателя

A1. Комбинация приборов
A1е22. Индикатор неисправности системы SRS
N2/10. Блок управления SRS
N3/9. Блок управления CDI
N10. Блок управления SAM
N69/1. Блок управления левой передней дверью
N69/2. Блок управления правой передней дверью
N72/1. Блок управления верхней панелью управления
N72/1e1. Световой индикатор выключения правой передней подушки безопасности при наличии детского сиденья
N73. Блок управления включением зажигания EIS (EZS)
X11. Разъем шины шанных
CAN B. Мупьтиплексная сеть салона (CAN-B)
CAN-C. Мультиплексная сеть моторного отсека (CAN-C)

Элементы системы безопасности

Внимание!

Перед тем, как приступать к работам, при проведении которых придется в той или иной степени манипулировать элементами системы пассивной безопасности, в обязательном порядке ознакомьтесь с разделом «Меры предосторожности при обслуживании узлов, содержащих элементы системы пассивной безопасности"

Меры предосторожности

 при обслуживании узлов, содержащих элементы системы пассивной безопасности
Разборка узлов системы

- Разборка и повторная сборка узлов системы подушек безопасности может нарушить работоспособность системы, которая может самопроизвольно сработать и привести к серьезным травмам или смерти.

Не разбирайте никаких узлов системы подушек безопасности!

Ремонт жгутов электропроводки

- Неправильно восстановление жгута проводов системы безопасности может случайно привести в действие подушки безопасности или механизмы предварительного натяжения ремней безопасности, которые могут нанести серьезный ущерб. Если неисправность найдена в соединительных элементах, заместите жгут проводов.
Не пытайтесь ремонтировать проводку!

Проверка модулей подушек безопасности

Использование омметра при проверке подушек безопасности может привести ее в действие.
Не используйте омметр для проверки подушек безопасности!

Для этого нужно использовать систему бортовой диагностики в условиях СТО.

Не используйте омметр для проверки механизма предварительного натяжения ремней безопасности!

Для этого нужно использовать систему бортовой диагностики в условиях СТО.

Правила обращения с подушками безопасности

При переноске подушки безопасности держите ее так, чтобы рабочая и сторона не была направлена на вас.

Не следует класть подушку лицевой поверхностью вниз, так как при случайном срабатывании корпус подушки может быть отброшен разворачивающейся в произвольном направлении подушкой и нанести травмы.

Правила обращения с боковыми подушками безопасности

Если боковая подушка безопасности однажды срабатывала, то при ремонте автомобиля в обязательном порядке следует заменить не только подушку безопасности, но и спинку сиденья. Причина: при срабатывании подушки может деформироваться рама спинки сиденья.

Правила обращения с блоком управления системой пассивной безопасности (SRS)

- Разъединение разъема блока управления системой пассивной безопасности (SRS) (далее - «блока SRS n) или перемещения блока SRS при ключе замка зажигания, установленном в положение ON, может вызвать развертывание модулей подушек безопасности которые могут серьезно травмировать вас.
- Перед разъединением разъема блока SRS поверните ключ замка зажигания в положение LOCK, затем снимите отрицательный кабель АКБ и выждите не менее 1 минуты, для того чтобы в резервном источнике питания блока SRS была исчерпана запасенная электрическая энергия.
Примечание: создание резерва электрической энергии предусмотрено конструкцией системы. Это необходимо для того, чтобы при разрыве цепей электропитания во время аварии (напр. выпал аккумулятор) система сработала автономно на энергии, запасенной в блоке SRS.

Аналогично запрещается демонтировать или перемещать подключенный к разъему блок управления SRS без проведения описанной в предыдущем пункте процедуры отключения блока.

- Соединение разъема блока SRS, пока блок надежно не установлен и не закреплен на своем месте, опасно. Датчик столкновения в блоке SRS может выдать сигнал к срабатыванию подушек безопасности. Это может привести к серьезному ущербу. Поэтому перед соединением разъема установите блок управления SRS на автомобиль и надежно закрепите его.
- Для автомобилей с одним датчиком столкновения, если система когда-либо срабатывала, следует обязательно заменить блок управления SRS новым.

Примечание: блок управления SRS не может быть проверен на наличие внутренних повреждений после срабатывания системы.

Правила обращения с датчиком зоны разрушения

- Разъединение разъема датчика зоны разрушения (далее - «датчика») или перемещения датчика при ключе замка зажигания, установленном в положение ON, может вызвать развертывание модулей подушек безопасности, которые могут серьезно травмировать вас.
- Перед разъединением разъема датчика поверните ключ замка зажигания в положение LOCK, затем снимите отрицательный кабель АКБ и выждите не менее 1 минуты, для того чтобы в резервном источнике питания блока SRS была исчерпана запасенная электрическая энергия.
- Также при попытке демонтировать датчик или при его сотрясении система может сработать. Поэтому перед любыми манипуляциями с датчиком проведите процедуру отключения питания системы.
- После срабатывания системы при ремонте датчик следует заменить новым по тем же причинам, что и блок управления SRS.
- Попадание нефтепродуктов, смазочных материалов, воды и т. д. на элементы системы может случайно привести в действие подушки безопасности или механизмы предварительного натяжения ремней безопасности, что может нанести серьезный ущерб.
Не допускайте попадания нефтепродуктов, смазочных материалов, воды и т. д. на элементы системы!
- Касание любыми металлическими предметами (отвертки и т. д.), контактов разъемов подушек безопасности или механизмов предварительного натяжения ремней безопасности может повредить разъемы и активировать систему.
Не допускайте касания никакими инородными предметами контактов разъемов!

ВНИМАНИЕ: все работы по снятию и установке узлов, агрегатов и деталей автомобиля рекомендуется производить при отключенной аккумуляторной батарее. Работы, связанные со снятием и установкой элементов пассивной безопасности (подушки безопасности и УПН ремней безопасности), необходимо проводить только после ознакомления с инструкцией по эксплуатации и с обязательным извлечением соответствующего предохранителя и рассоединением соответствующих разъемов.

Подушка безопасности водителя

Подушка безопасности водителя (11) с пиропатроном (A45/1r1) встроены в ударопоглощающую накладку рулевого колеса. При аварии раскрывающаяся подушка заполняет пространство перед водителем в течение 45 мс.

1. Подушка безопасности водителя 2. Пиропатрон $\mathrm{A} 45 / \mathrm{rr1}$

Боковые подушки безопасности

Боковые подушки безопасности предназначены для защиты ребер и внутренних органов людей, сидящих на передних сиденьях.
Боковые подушки безопасности (14) водителя (R12/32) и переднего пассажира (R12/33) встроены в спинки сидений.
3. Боковая подушка безопасности переднего пассажира
4. Пиропатрон боковой подушки безопасности водителя R12/32
5. Пиропатрон боковой подушки безопасности переднего пассажира R12/33

VN 10.010

Устройство предварительного натяжения ремня безопасности ремня безопасности (УПН)

УПН (10) ремней безопасности установлены за облицовкой средних стоек салона. При двойном переднем пассажирском сиденьи УПН (13) ремень безопасности среднего пассажира расположен в самом сиденье.
6. Блок преднатяжителя ремня безопасности
7. Преднатяжитель ремня безопасности среднего

пассажира
8. Пиропатрон преднатяжителя ремня

безопасности ETR (GUS) водителя R12/1
9. Пиропатрон преднатяжителя ремня безопасности ETR (GUS) переднего пассажира ETR (GUS) R12/2
10. Пиропатрон преднатяжителя ремня

безопасности ETR (GUS) переднего среднего пассажира ETR (GUS) R12/34

Конструкция УПН

1. Блок преднатяжителя ремня безопасности
2. Шариковый коллектор
3. Ведущее колесо
4. Приемная катушка ремня
5. Вал приемной катушки
6. Пластина муфты
7. Блокирующий рычаг
8. Пружина
9. Блокирующая пластина
10. Пиропатрон преднатяжителя ремня безопасности ETR (GUS) водителя R12/1

VN 10.013

Верхние боковые подушки безопасности
Предназначены для защиты головы при боковом ударе.
Верхние подушки безопасности (13) и газогенераторы на основе пиропатронов (R12/16) и (R12/17) установлены совместно с воздушными трубками вдоль салона под облицовкой потолка.

Mercedes Vito Viano Схемы электрических соединений

Пользование электрическими схемами

Обозначение соединений в разъемах

Обозначение проводов

a. Обозначение сечения проводника в кв. мм
b. Основной цвет изоляции
c. Идентификационный цвет

Сроки внедрения новшеств

а. Старый вариант, применявшийся

до указанной даты
b. Новый вариант, который применяется начиная с указанной даты

Блоки предохранителей

a. Нумерация выходных контактов (A, B, C or D) b. Пересечение линий с соединением (перемычка) c. Обозначение цепи
d. Номинал предохранителя (амперы)
e. Нумерация входных контактов (E)
f. Номер предохрантеля

Функционально связанные элементы

a. Функционально связанные элементы b. Объединяющие линии, которые соединяют два функционально связанных элемента с одним или более функционально не связанными элементами

Непрямые линии соединения (только для разветвленных цепей 31 и 58)

a. Функционально связанный элемент
b. Непрямая линия соединения для более, чем двух промежуточных функционально не связанных элементов
c. Соединение с любой из цепей (31 или 58)

Цвета проводов
BK = черный
$\mathrm{BN}=$ коричневый
$\mathrm{BU}=$ синий
$\mathrm{GN}=$ зеленый
GY = серый
OG = оранжевый
$\mathrm{PK}=$ розовый
$\mathrm{RD}=$ красный
$T R=$ прозрачный
$\mathrm{VT}=$ фиолетовый
WH = белый
YE = желтый

Mercedes Vito Viano

Схема 1 из 6 Блок реле и предохранителей	01 b

NIJ

Схема 2 из 6 Блок реле и предохранителей 02 с

Mercedes Vito Viano Схемы электрических соединений

Схема 3 из 6 Блок реле и предохранителей

Схема 4 из 6 Блок реле и предохранителей

Схема 4 из 6 Блок реле и предохранителей

This document is created with trial version of Image2PDF Pilot 2.16.108.
Mercedes Vito Viano Схемы электрических соединений

Схема 6 из 6 Блок реле и предохранителей

This document is created with trial version of Image2PDF Pilot 2.16.108.

Mercedes Vito Viano
Схемы электрических соединений

Схема 10 Подача питания к блоку предохранителей, расположенном в раме правого сиденья

Схема 12 Электронный блок управления включением зажигания

Схема 13 Соединительные муфты элетропроводки	13 а

Mercedes Vito Viano Схемы электрических соединений
Схема 13 Соединительные муфты элетропроводки

Схема 13 Соединительные муфты элетропроводки	13 е

Схема 14 Соединительные муфты элетропроводки 14 a

Схема 14 Соединительные муфты элетропроводки

Схема 14 Соединительные муфты элетропроводки

Схема 15 Соединительные муфты элетропроводки

This document is created with trial version of Image2PDF Pilot 2.16.108.
Mercedes Vito Viano
Схемы электрических соединений

Схема 17 Соединительные муфты элетропроводки

Mercedes Vito Viano Схемы электрических соединений

хема 18 Соединительные муфты элетропроводки	18 a

Mercedes Vito Viano Схемы электрических соединений

Схема 21 Электронный блок управленния системой CDI (для двигателей ОМ 646.982 и 646.983)

Mercedes Vito Viano Схемы электрических соединений

Схема 22 Стартер и генератор (для двигателей ОМ 646.980 и 646.981 .)

Схема 23 Электронный блок управления системой CDI (для двигателей ОМ 646.982 и 646.983)

Mercedes Vito Viano Схемы электрических соединений

Схема 25 Электронный блок управления системой СDI (для двигателей ОМ 646.980 и 646.981)

Схема 27 Система подачи топлива

Схема 28 АКПП	28 a

Схема 28 АКПП

Схема 30 Управление тормозами (с системой курсовой устойчивости ESP (код комплектации BB3))

Схема 31 Управление тормозами (без системы курсовой устойчивости ESP)

Схема 31 Управление тормозами (без системы курсовой устойчивости ESP)

Схема 32 Система курсовой устойчивости ESP до с № 195056

Mercedes Vito Viano Схемы электрических соединений

Схема 32 Система курсовой устойчивости ESP до с № 195056

Схема 33 Система курсовой устойчивости ESP начиная с № 195057

Схема 34 Многофункциональное рулевое колесо	34 b

Схема 36 Электропривод заднего вентиляционного окна

Схема 37 Блок управления правой сдвижной дверью

Mercedes Vito Viano Схемы электрических соединений

Схема 38 Задний стеклоочиститель	38

Схема 39 Электропривод стеклоподъемника двери водителя

Mercedes Vito Viano Схемы электрических соединений

Mercedes Vito Viano Схемы электрических соединений

Схема 42 Блок управления передней правой двери
42 b

Mercedes Vito Viano Схемы электрических соединений

Схема 43 Центральный замок
K

43 c

Mercedes Vito Viano Схемы электрических соединений

Схема 44 Противоугонная сигнализация	44 b

Схема 45 Наружное освещение
45 c

Mercedes Vito Viano Схемы электрических соединений
Схема 47 Освещение номерного знака до № 094908

Mercedes Vito Viano Схемы электрических соединений

Схема 49 Указатели поворотов и аварийная сигнализация	49 b

Mercedes Vito Viano Схемы электрических соединений

Схема 49 Указатели поворотов и аварийная сигнализация	49 e

Mercedes Vito Viano Схемы электрических соединений

Схема 53 Подсветка органов управления

Схема 56 Стеклоомыватели

Схема 58 Система пассивной безопасности до 31.08 .2005 г.
58 a

Mercedes Vito Viano Перечень элементов электрического оборудования

B6/3	Датчик положения распределительного вала (эффект Холла)	B24/8	Датчик угла поворота рулевого колеса
		B24/15	Датчик угла рыскания и поперечного ускорения
B6/4	Индуктивный датчик скорости	B24/15	Датчик угла рыскания и поперечного ускорения
B6/6	Индуктивный датчик скорости	B25	Микрофон системы Hands free
B6/17	Датчик положения распределительного вала (эффект Холла)	B25/1	Микрофон системы Hands free
B8/2	Левый передний датчик системы Parktronic	B28	Датчик давления во впускном коллекторе
B8/3	Передний левый внутренний датчик системы Parktronic	B28/1	Выходной датчик давления воздушного фильтра
B8/4	Передний правый внутренний датчик системы Parktronic	B28/2	Выходной датчик давления воздушного фильтра
B8/5	Передний правый средний датчик системы Parktronic	B28/8	Датчик перепада давлений фильтра макрочастиц
B8/6	Передний правый наружный датчик системы Parktronic	B28/14	Датчик перепада давлений фильтра макрочастиц
B8/7	Задний правый наружный датчик системы Parktronic	B28/16	Датчик перепада давлений фильтра макрочастиц
B8/8	Задний правый внутренний датчик системы Parktronic	B32	Солнечный датчик
		B34	Датчик давления в тормозной жидкости системы курсовой стабилизации
B8/9	Задний левый внутренний датчик системы Parktronic	B36/1	Правый оптический датчик скорости
B8/10	Задний левый наружный датчик системы Parktronic	B36/2	Левый оптический датчик скорости
		B37/3	Датчик педали акселератора
B10/6	Датчик температуры испарителя	B37/3s 1	Переключатель режима Kick down АКПП
B11	Датчик температуры ОЖ	B37/4	Блок управления педали акселератора
B11/2	Датчик температуры ОЖ	B38/2	Датчик дождя/света
B11/4	Датчик температуры ОЖ	B40	Комбинированный датчик состояния и уровня масла
B11/4	Датчик температуры ОЖ		
B12	Датчик давления хладагента	B40/3	Комбинированный датчик состояния и уровня масла
B14	Датчик температуры наружного воздуха		
B14/1	Датчик температуры воздуха внутри салона (дача на колесах типа Westfalia)	B40/4	Комбинированный датчик состояния и уровня масла
B14/2	Датчик температуры наружного воздуха (дача на колесах типа Westfalia)	B40/5	Комбинированный датчик состояния и уровня масла
B14/3	Дополнительный датчик температуры АКБ	B44	Передний внутренний датчик противоутонной системы
B17/9	Датчик температуры нагнетаемого воздуха	B44/1	Задний внутренний датчик противоугонной системы
B17/11	Датчик температуры нагнетаемого воздуха		
B18	Датчик противодавления в системе выпуска ОГ	B48	Датчик распознавания наличия детского сиденья
B19/7	Входной датчик температуры ОГ в каталитическом преобразователе OГ (TWC (KAT))		
		850	Датчик температуры топлива
		B50/3	Датчик температуры топлива
B19/9	Входной датчик дизельного фильтра (макрочастицы)	B60	Датчик противодавления в системе выпуска ОГ
B19/10	Выходной датчик температуры ОГ в каталитическом преобразователе OГ (TWC (KAT))	B60/1	Датчик противодавления в системе выпуска ОГ
		B76	Датчик уровня воды в топливном фильтре
		B76/1	Датчик уровня воды в топливном фильтре
B19/12	Выходной температурный датчик дизельного фильтра (макрочастицы)	B85	Первичный датчик кислорода в ОГ (КОТА)
B19/13	Входной датчик температуры ОГ в каталитическом преобразователе OГ (TWC (KAT))	B85/1	Первичный датчик кислорода в ОГ (КОТА)
		B92	Датчик температуры в салоне системы кондиционирования
B19/14	Входной датчик температуры ог в каталитическом преобразователе OГ (TWC (KAT))	B92x1	Разъем датчик температуры в салоне системы кондиционирования
		B93	Датчик температуры испарителя
B22/7	Задний левый датчик продольного наклона автомобиля	B93x1	Разъем датчика температуры испарителя
B22/10	Задний правый датчик продольного наклона автомобиля	B94	Датчик температуры двигателя
		B94x1	Разъем датчика температуры двигателя

Mercedes Vito Viano
Перечень элементов электрического оборудования

B98/1	Левый датчик предупреждения о не закрытом люке
B98/2	Правый датчик предупреждения о не закрытом люке (дача на колесах типа Westfalia)
B146/1	Датчик уровня сточных вод (дача на колесах типа Westfalia)
B146/2	Датчик уровня свежей воды (дача на колесах типа Westfalia)
B149	Датчик высокого давления системы кондиционирования
B149x1	Разъем датчика высокого давления системы кондиционирования
B150	Датчик-переключатель низкого давления системы охлаждения
D2	Стабилитрон
E1	Передняя левая блок-фара
E1e1	Левая фара дальнего света
E1e2	Нижний левый передний фонарь
E1e3	Левый передний фонарь габаритных стояночных огней
E1e4	Передняя левая противотуманная фара
E1e5	Левый передний указатель поворота
E2	Передняя правая блок-фара
E2e1	Правая фара дальнего света
E2e2	Нижний правый передний фонарь
E2e3	Правый передний фонарь габаритных стояночных огней
E2e4	Передняя правая противотуманная фара
E2e5	Правый передний указатель поворота
E3	Левый фонарь света заднего хода
E3e1	Левый задний указатель поворота
E3e2	Левый задний фонарь габаритных стояночных огней
E3e3	Левый фонарь света заднего хода
E3e4	Левый стоп-сигнал
E3e5	Задний левый противотуманный фонарь
E4	Правый задний блок фонарей
E4e1	Правый задний указатель поворота
E4e2	Правый задний фонарь габаритных стояночных огней
E4e3	Правый фонарь света заднего хода
E4e4	Левый стоп-сигнал
E4e5	Задний правый противотуманный фонарь
E11/3	Левый фонарь подсветки верхнего багажного отсека (дача на колесах типа Westfalia)
E11/4	Правый фонарь подсветки верхнего багажного отсека (дача на колесах типа Westfalia)
E11/5	Лампа подсветки люка (дача на колесах типа Westfalia)
E13/1	Лампа подсветки вещевого ящика
E14/4	Верхний габаритный огонь
E14/6	Подсветка левого переднего зеркала заднего вида
E14/7	Подсветка левого переднего зеркала заднего вида
E15	Передний плафон индивидуальной подсветки
E15/3	Передний плафон освещения задней части салона

E15/4	Задний плафон освещения задней части салона
E15/6	Лампа подсветки внутренней ручки левой передней двери
E15/7	Лампа подсветки внутренней ручки правой передней двери
E15/8	Лампа подсветки внутренней ручки левой задней двери
E15/9	Лампа подсветки внутренней ручки правой задней двери
E15/22	Лампа внутреннего освещения 1 (дача на колесах типа Westfalia)
E15/23	Лампа внутреннего освещения 2 (дача на колесах типа Westfalia)
E15/27	Центральная лампа освещения багажного отсека
E15/27x1	Разъем центральной лампы освещения багажного отсека
E15/29	Правая лампа 1 освещения багажного отсека
E15/30	Левая лампа 2 освещения багажного отсека
E15/32	Правые дополнительные лампы
E15/33	Левые дополнительные лампы
E17/1	Лампа подсветки входа левой передней двери
E17/2	Лампа подсветки входа правой передней двери
E18/1	Лампа подсветки багажника
E19/1	Левый фонарь подсветки номерного знака
E19/2	Левый фонарь подсветки номерного знака
E19/3	Левый дверной фонарь подсветки номерного знака
E19/4	Правый дверной фонарь подсветки номерного знака
E21/1	Дополнительный стоп-сигнал
E21/2	Дополнительный стоп-сигнал
E22/1	Левый повторитель указателя поворота
E22/2	Правый повторитель указателя поворота
E22/3	Левый задний повторитель указателя поворота
E22/4	Правый задний повторитель указателя поворота
E25/7	Левая транзисторная лампа
E25/8	Правая транзисторная лампа
F1	Панель предохранителя (1 контакт)
F4	Панель предохранителя (1 контакт)
F5	Панель предохранителя (1 контакт)
F6	Панель предохранителя (1 контакт)
F7	Панель предохранителей (9 контактов)
F7-b1	Разъем предохранителя (2 контакта)
F7-b2	Разъем предохранителя (2 контакта)
F7-b3	Разъем предохранителя (2 контакта)
F7-b4	Разъем предохранителя (2 контакта)
F7-b5	Разъем предохранителя (1 контакт)
F7f1	Предохранитель блока управления двери левой стороны
F7f2	Предохранитель блока управления правой двери
F7f3	Предохранитель 1 (PSM)
F7¢4	Предохранитель 2 (PSM)

F7f5	12 V предохранитель розетки, основание сиденья переднего пассажира
F7f6	Предохранитель линии зарядки
F7f7	Предохранитель таймера и питания освещения
F7f8	Предохранитель питания системы STH
F7f9	Предохранитель привода люка
F34	Коробка предохранителей, 22 контакта
F34f21	Предохранитель фары-искателя
F34f22	Предохранитель телевизионной консоли
F34123	Предохранитель внутренних ламп
F34f24	Предохранительверхней панели управления (SHD)
F34f25	Предохранитель заднего люка
F34f26	Предохранитель радиоприемника (STH)
F34227	Предохранитель передней системы климатконтроля
F34428	Предохранитель розетки телевизионная консоль
F34429	Предохранитель мобильного телефона (CTEL, D2B и VCS)
F34330	Предохранитель подогрева сидений
F34 31	Предохранитель питания тахографа
F34432	Предохранитель 32
F34433	Предохранитель разъема шины данных
F34334	Предохранитель 34
F34 335	Предохранитель питания импульсного клапана кондиционера
F34¢36	Предохранитель системы SRA
F34 338	Предохранитель блокировки рулевого колеса (EIS (EZS))
F34439	Предохранитель переднего вентилятора
F34440	Предохранитель клапана тормозной системы
F34441	Предохранитель насоса А5С
F34442	Предохранитель радиосистемы или системы навигации (DIN)
F35	Панель предохранителей 22контакта
F35f21	Предохранитель розетки 12 B (около переднего пассажира)
F35t22	Предохранитель правой розетки 12 В пассажирского отделеният
F35¢23	Предохранитель разъема прицепа
F35t24	Предохранитель системы AAG
F35f25	Предохранитель регулятора положения сиденья водителя
F35¢26	Предохранитель регулятора положения сиденья переднего пассажира
F35¢27	Предохранитель питания устройств левой сдвижной двери
F35¢28	Предохранитель питания устройств правой сдвижной двери
F35f29	Предохранитель заднего вентилятора
F35 30	Предохранитель системы управления пневматической подвеской или системой управления полным приводом
F35f31	Предохранитель системы PTS
F35ł32	Предохранитель системы контроля давления в шинах

F35¢35	Предохранитель блока управления системы STH
F35f36	Предохранитель центрального замка задней двери
F35f37	Предохранитель заднего кондиционера
F35f38	Предохранитель контроллера тормозной системы (NAFTA)
F35f39	Предохранитель переднего вентилятора
F35f40	Предохранитель задней розетки 12 B
F35f41	Предохранитель повторителя указателя поворотов
F35f42	Предохранитель 42
F60/1	Панель предохранителя (1 контакт)
F60/1	Панель предохранителя (1 контакт)
F60/1f1	Предохранитель питания прицепа (туристического)
F60/2	Панель предохранителя (1 контакт)
F60/2f2	Предохранитель питания прицепа (туристического)
F60/3	Панель предохранителя (1 контакт)
F60/3f3	Предохранитель линии зарядки дополнительной АКБ
F60/4	Панель предохранителя (1 контакт)
F60/4f4	Предохранитель датчика CD-чейнджера
F60/5	Панель предохранителя (1 контакт)
F60/5f5	Предохранитель температурного датчика дополнительной АКБ
F66	Предохранитель подогревателя стекол
F72	Панель предохранителей (6 предохранителей) (дача на колесах типа Westfalia)
F72f1	Предохранитель розетки 12В
F72¢2	Предохранитель подсветки люка верхнего багажного отсека
F72f3	Предохранитель центрального блока управления системы COU (ZBE)
F72f4	Предохранитель холодильной камеры
F91	Предохранитель цепи 30
G1	АКБ
G1/1	Дополнительная АКБ
G2/2	Генератор
G2/5	Генератор 200 A
G3/3	Левый датчик кислорода на входе в каталитический преобразователь ОГ (CAT)
G3/4	Правый датчик кислорода на входе в каталитический преобразователь Or (САТ)
G3/5	Левый датчик кислорода на выходе из каталитического преобразователя OF (CAT)
G3/6	Левый датчик кислорода на выходе из каталитического преобразователя ОГ (САТ)
H1	Предупреждающий звуковой сигнал
H3/1	Излучатель противоугонного звукового сигнала с автономным питанием
H3/4	Звуковой сигнал заднего хода
H4/1	Динамик в левой передней двери
H4/2	Динамик в правой передней двери
H4/3	Динамик на левой боковой стенке
H4/4	Динамик на правой боковой стенке

H4/13	Динами системы Hands-free	K40/9f31	Предохранитель звукового сигнала противоугонной системы ATA (EDW)
H4/33	Высокочастотный динамик в левой передней двери	K40/9f32	Предохранитель переносного телефона (CTEL,
H4/34	Высокочастотный динамик в правой передней двери	K40/9f33	Предохранитель блока управления подушками безопасности ACSR (AKSE)
H4/44	Высокочастотный динамик на левой боковой стенке	K40/9f34	Предохранитель цепи 15
H4/45	Высокочастотный динамик на правой боковой стенке	K40/9735	Предохранитель стандартной верхней панели управления
K2	Реле омывателя фар	K40/9f36	Предохранитель регулятора поясничной поддержки
K9	Реле дополнительного вентилятора	K40/9ł37	Предохранитель зеркала заднего вида
K23/1	Реле электродвигателя вентилятора		
K40/9	Блок реле и предохранителей	K40/9f38	Предохранитель системы TV
		K40/9139	Предохранитель
K40/9f3	Предохранитель выключателя стоп-сигнала	K40/9t40	Предохранитель блока управления дизельным двигателем
K40/9f1	Предохранитель переднего стеклоочистителя		
K40/9f2	Предохранитель звукового сигнала	K40/9f41	Предохранитель блока управления дизельным двигателем
K40/9f3	Предохранитель выключателя стоп-сигнала		
K40/9f4	Предохранитель отопителя	K40/9k1	Реле звукового сигнала
K40/9f5	Предохранитель разъема шины данных, выключателя фары-искателя, комбинации приборов	K40/9k2	Реле стеклоочистителя
		K40/9k3	Реле 2-й скорости стеклоочистителя
		K40/9k4	Реле цепи 87 (двигатель)
K40/9f6	Предохранитель электропитания компонентов оборудования двигателя	K40/9k5	Реле стартера
K40/977	Предохранитель заднего стеклоочистителя	K40/9k6	Реле топливного насоса
K40/9f8	Предохранитель 1 электропитания компонентов оборудования двигателя	K40/9k7	Реле цепи 15
K40/9f9	Предохранитель 2 электропитания компонентов оборудования двигателя	K40/9k9	Реле подогревателя заднего стекла
K40/9f10	Предохранитель электропитания компонентов оборудования двигателя	K40/9k10	Реле разрыва цепи 15R
		K40/9k11	Реле разрыва цепи 15R
K40/9f11	Предохранитель цепи 30Z (двигатель)	K40/9f14	Предохранитель тормозной системы
K40/9f12	Предохранитель обогревателя заднего стекла	K40/9f29	Предохранитель
K40/9f13	Предохранитель комбинации приборов EIS (EZS)	K57	Реле разрыва цепи АКБ
K40/9f14	Предохранитель тормозной системы	K64	Реле насоса подачи вторичного воздуха
K40/9f15	Предохранитель устройства регулирования положения пучка света фар	K101	Реле электродвигателя компрессора кондиционера
K40/9f16	Предохранитель стартера	K102	Реле подогревателя (размораживание)
K40/9f17	Предохранитель FP	K103	Реле переключения на стационарную холодильную установку
K40/9f18	Предохранитель прикуривателя, подсветки перчаточного ящика	K104	Реле воздушной завесы (охлаждение) проема сдвижной двери
K40/9f19	Предохранитель радиоприемника	K105	Реле воздушной завесы (охлаждение) проема задней двери
K40/9f20	Предохранитель катушки зажигания бензинового двигателя 112		
K40/9f2 1	Предохранитель блока селектора передач	K106	Реле переключения громкой связи системы Hands-free
K40/9ł22	Предохранитель тахографа	K107	Реле отсекающего клапана системы размораживания горячим газом
K40/9f23	Предохранитель блока управления подушками безопасности		
		K108	Реле понижения напряжения
K40/9f24	Предохранитель	L5	Датчик положения коленчатого вала
K40/9f25	Предохранитель системы AAG	L5/6	Датчик положения коленчатого вала
K40/9f26	Предохранитель реле отсечки питания (кэмпер типа Westfalia)	L5/7	Датчик положения коленчатого вала
		L5/8	Датчик положения коленчатого вала
K40/9f27	Предохранитель цепи 15	L6/1	Левый передний датчик АБС
K40/9f28	Предохранитель цепи 87 ETC (EGS)	L6/2	Правый передний датчик АБС
K40/9f29	Предохранитель	L6/3	Левый задний датчик АБС
K40/9f30	Предохранитель	L6/4	Правый задний датчик АБС
K40/9f30	Предохранитель		

Mercedes Vito Viano
 Перечень элементов электрического оборудования

L16/1	Правый контактподачи питания к сдвижной двери	M14/9	Привод центрального замка правой сдвижной двери CL (ZV)
L16/2	Левый контакт подачи питания к сдвижной двери		
M1	Стартер	M14/12	Приводцентрального замка задней двери CL (ZV)
M2	Электродвигатель вентилятора	M14/29	Переключатель левой сдвижной двери ZV
M2/1	Электродвигатель заднего вентилятора	M14/30	Переключатель правой сдвижной двери ZV
M3/3	Датчик уровня топлива в блоке топливного насоса	M16/7	Привод дроссельного клапана
		M16/7m1	Электродвигатель привода
M3/3b1	Датчик уровня топлива	M16/7r1	Потенциометр-датчик положения дроссельного клапана
M3/3m1	Топливный насос		
M4	Дополнительный вентилятор кондиционера	M16/7r2	Потенциометр-датчик положения акселератора
M4/2	Дополнительный вентилятор кондиционера	M16/8	Электродвигатель привода заслонки смешивания воздуха
M4/2	Дополнительный вентилятор кондиционера		
M4/12	Дополнительный вентилятор радиосистемы	M16/9	Привод дроссельной заслонки входящего воздуха
M4/18	Дополнительный вентилятор аудиосистемы		
M5/1	Насос омывателя стекол	M16/21	Электродвигатель заслонки отсекания наружного воздуха в режиме рециркуляции воздуха в салоне
M5/2	Насос омывателя фар HCS (SRA)		
M5/3	Насос омывателя заднего стекла	M16/22	Электродвигатель привода распределения воздуха
M5/31	Насос омывателя заднего стекла совместно с системой очистки фар	M16/42	Устройство позиционирования дроссельного клапана
M6/1	Электродвигатель стеклоочистителя	M16/44	Устройство позиционирования дроссельного клапана
M6/10	Электродвигатель стеклоочистителя левой задней двери		
M6/11	Электродвигатель стеклоочистителя правой задней двери	M21/6	Левое регулируемое и подогреваемое наружное зеркало заднего вида
M6/12	Электродвигатель стеклоочистителя подъемной задней двери	M21/6e1	Повторитель указателя поворотов, размещенный на зеркале заднего вида
M9	Всасывающий вентилятор датчика	M21/6m1	Электродвигатель привода вертикального регулирования левого зеркала
M10/1	Электродвигатель левого переднего	M21/6m2	Электродвигатель привода горизонтального регулирования левого зеркала
M10/2	Электродвигатель правого переднего стеклоподъемника	M21/6m3	Электродвигатель привода складывания левого зеркала
M12	H	M21/6r1	Подогреватель левого зеркала заднего вида
M12/1	Задний наклоняющийся и сдвижной люк (SHD)	M21/7	Правое регулируемое и подогреваемое наружное зеркало заднего вида
M12/1b1	Задний датчик Холла положения наклоняющегося и сдвижного люка (SHD)	M21/7e1	Повторитель указателя поворотов, размещенный на зеркале заднего вида
M12/1b2	Задний датчик Холла положения наклоняющегося и сдвижного люка (SHD)	M21/7m1	Электродвигатель привода вертикального регулирования правого зеркала
M12/1m1	Электродвигатель заднего наклоняющегося и сдвижного люка SHD	M21/7m2	Электродвигатель привода горизонтального регулирования правого зеркала
M12/8	Гидравлический насос подъема крыши (Westfalia)	M21/7m3	Электродвигатель привода складывания правого зеркала
M12b1	Передний датчик Холла положения наклоняющегося и сдвижного люка (SHD)	M21/7r1	Подогреватель правого зеркала заднего вида
M12b1	Передний датчик Холла положения наклоняющегося и сдвижного люка (SHD)	M21/8	Электродвигатель привода левого вентиляционного окна
M12b2	Передний датчик Холла положения наклоняющегося и сдвижного люка (SHD)	M21/9	Электродвигатель привода правого вентиляционного окна
M12m1	Электродвигатель (SHD)	M27/1	Электродвигатель привода регулирования переднего сиденья (вперед/назад)
M13/5	Циркуляционный насос отопителя	M27/2	Электродвигатель привода задней части сиденья (вверх/вниз)
M14/6	Привод центрального замка передней двери CL (ZV)	M27/3	Электродвигатель привода передней части сиденья (вверх/вниз)
M14/7	Привод центрального замка задней подъемной двери CL (ZV)		
		M27/4	Электродвигатель привода подголовника (вверх/вниз)
M14/8	Привод центрального замка левой сдвижной двери СL (ZV)	M27/5	(вверх/вниз) Электродвигатель привода спинки сиденья (вперед/назад)

Mercedes Vito Viano

M28/1	Электродвигатель привода переднего сиденья (вперед/назад)
M28/2	Электродвигатель привода задней части сиденья (вверх/вниз)
M28/3	Электродвигатель привода передней части сиденья (вверх/вниз)
M28/4	Электродвигатель привода подголовника (вверх/вниз)
M28/5	Электродвигатель привода спинки сиденья (вперед/назад)
M28/11	Электродвигатель привода регулятора поясничной поддержки правого сиденья
M28/12	Электродвигатель привода регулятора поясничной поддержки левого сиденья
M33	Электрический воздушный насос
M46/1	Дозирующий топливный насос стационарного отопителя STH
M57/5	Электродвигатель привода открывания правой сдвижной двери
M57/6	Электродвигатель привода открывания левой сдвижной двери
M72	Входной порт переключателя отсечки
M73/1	Привод правой сдвижной двери
M73/2	Привод левой сдвижной двери
M81	Электродвигатель привода компрессораохладителя
M82	Вентилятор конденсора
M82x1	Разъем вентилятора конденсора
M83/1	Вентилятор левого испарителя
M83/2	Вентилятор центрального испарителя
M83/3	Вентилятор правого испарителя
M83x1	Разъем вентилятора испарителя
M84	Электродвигатель наддува воздушной завесы сдвижной двери
M85	Электродвигатель наддува воздушной завесы задней двери
M86	Электродвигатель охладителя
M86x1	Разъем электродвигателя охладителя
N2/2	Блок управления подушками безопасности SRS
N2/10	Блок управления подушками безопасности SRS
N2/11	Блок управления верхними подушками безопасности ARCADE
N3/9	Блок управления дизельным двигателем CDI
N3/10	Блок управления бензиновым двигателем ME
N3/20	Блок управления дизельным двигателем CDI
N3/26	Блок управления дизельным двигателем CDI
N9/1	Блок управления дополнительными указателями поворотов
N10	Блок управления специального оборудования SAM
N10/16	Блок управления COU (ZBE)
N14/2	Выходной каскад питания свечей накаливания
N14/3	Выходной каскад питания свечей накаливания
N15/3	Блок управления EGS
N15/5	Блок управления селектором передач
N19/3	Блок управления кондиционером пассажирского отсека FONDKLA

N26/5	Блок управления электронным замком рулевой колонки
N28/1	Блок управления коммутацией с прицепом (AAG)
N32/1	Блок управления настройкой положения сиденья водителя с памятью
N32/2	Блок управления настройкой положения сиденья переднего пассажира с памятью
N33/4	Блок управления PTC
N33/5	Блок управления стационарным подогревателем воздуха
N34	Таймер STH
N41/7	Блок управления микрофоном
N51/3	Блок управления системой регулирования уровня кузова (ENR)
N62	Блок управления системой «Парктроник» (PTS)
N69/1	Блок управления передней левой дверью
N69/2	Блок управления передней правой дверью
N69/6	Блок управления правой сдвижной дверью
N69/7	Блок управления правой сдвижной дверью
N70	Блок верхней панели управления
N70/1	Блок управления задним люком (SDE-H)
N73	Блок управления электронным выключателем зажигания EIS (EZS)
N88/1	Блок управления системой контроля давления в шинах
N93/1	Audio Блок управления (AGW)
N93/3	Центральный межсетевой коммутатор (CGW)
R1	Обогреватель заднего стекла
R1/1	Обогреватель заднего стекла левый
R1/2	Обогреватель заднего стекла правый
R3	Передний прикуриватель (с подсветкой)
R9/1	Свеча накаливания 1-го цилиндра
R9/2	Свеча накаливания 2-го цилиндра
R9/3	Свеча накаливания 3-го цилиндра
R9/4	Свеча накаливания 4-го цилиндра
R9/5	Свеча накаливания 5-го цилиндра
R9/6	Свеча накаливания 6-го цилиндра
R9/7	Свеча накаливания 1-го цилиндра
R9/8	Свеча накаливания 2-го цилиндра
R9/9	Свеча накаливания 3-го цилиндра
R9/10	Свеча накаливания 4-го цилиндра
R12/1	Привод преднатяжителя (с пиропатроном) ETR (GUS)
R12/2	Привод преднатяжителя (с пиропатроном) переднего пассажира ETR (GUS)
R12/4	Пиропатрон подушки безопасности переднего пассажира
R12/16	Пиропатрон левой верхней боковой подушки безопасности
R12/17	Пиропатрон правой верхней боковой подушки безопасности
R12/22	Пиропатрон подушки безопасности левого заднего бокового окна

R12/23	Пиропатрон подушки безопасности правого заднего бокового окна
R12/32	Пиропатрон подушки безопасности для грудной клетки водителя
R12/33	Пиропатрон подушки безопасности для грудной клетки переднего пассажира
R12/34	Привод преднатяжителя ремня безопасности переднего среднего пассажира ETR (GUS)
R12/38	Привод преднатяжителя ремня безопасности переднего пассажира ETR (GUS)
R13/1	Подогреватель подушки левого переднего сиденья
R13/2	Подогреватель спинки левого переднего сиденья
R13/3	Подогреватель подушки правого переднего сиденья
R13/4	Подогреватель спинки правого переднего сиденья
R14	Регулирующий сериесный резистор вентилятора
R39/1	Подогреватель вентиляционной линии
R39/2	Подогреватель вентиляционной линии
R45	Резистор кнопки сброса противоугонной сигнализации
R50	Подогреватель размораживания
R50	Подогреватель размораживания
S1	Выключатель фары искателя
S9/1	Выключатель стоп-сигнала
S10/1	Датчик износа колодок переднего левого колеса
S10/2	Датчик износа колодок переднего правого колеса
S10/3	Датчик износа колодок заднего левого колеса
S10/4	Датчик износа колодок заднего правого колеса
S11	Датчик уровня тормозной жидкости
S12	Переключатель индикатора стояночного тормоза
S13/1	Переключатель заднего люка
S16/2	Выключатель свет заднего хода
S21/13	Кнопка управления левым задним сдвижным стеклом
S21/14	Кнопка управления правым задним сдвижным стеклом
S22	Переключатель регулировки положения переднего левого сиденья
S23	Переключатель регулировки положения переднего правого сиденья
S40	Переключатель системы «Круиз-контроль»
S40/3	Датчик переключатель положения педали сцепления
S40s2	Функция переключателя замедления и установки скорости
S40s3	Функция переключателя ускорения и установки скорости
S40s4	Выключатель системы «Круиз-контроль»
S40s5	Выключатель контактного управления
S40s6	Переключатель переменной скорости
S40s7	Переключатель голосового управления

S40v1	Индикатор режима переменной скорости
S41	Датчик уровня ОЖ
S42	Датчик уровня жидкости в стеклоомывателе
S46/10	Выключатель стационарного обогревателя
S47	Привод передней левой двери
S47s1	Переключатель левого стеклоподъемника
S47s2	Переключатель правого стеклоподъемника
S47s3	Переключатель привода левого сдвижного стекла
S47s4	Переключатель привода правого сдвижного стекла
S47s5	Переключатель выбора управления (левым или правым) зеркалами заднего вида
S47s6	Переключатель регулирования положения зеркал
S47s7	Переключатель блокировки защиты детей
S48	Привод передней правой двери
S48s1	Переключатель левого стеклоподъемника
S48s2	Переключатель правого стеклоподъемника
S48s4	Переключатель правого сдвижного стекла
S48s5	Переключатель выбора управления (левым или правым) зеркалами заднего вида
S48s6	Переключатель регулирования положения зеркал
S48s7	Переключатель блокировки (защита детей)
S49/6	Поворотный переключатель задней правой распашной двери
S49/7	Поворотный переключатель задней левой распашной двери
S62	Концевой выключатель системы противоугонной сигнализации EDW (на капоте)
S62/5	Копка сброса аварийной сигнализации
S68/1	Выключатель контроля застегивания переднего левого ремня безопасности
S68/2	Выключатель контроля застегивания переднего правого ремня безопасности
S77	Переключатель управления уровнем кузова
S77/1	Переключатель блокировки регулирования уровня кузова
S81/1	Выключатель управления задним отопителем
S98	Блок управления системой кондиционирования
S108s3	Переключатель регулирования поясничной поддержки правого переднего сиденья
S109s3	Переключатель регулирования поясничной поддержки левого переднего сиденья
S110	Правая группа кнопок многофункционального рулевого колеса
S111	Правая группа кнопок многофункционального рулевого колеса
S144	Комбинированный переключатель
S144s1	Переключатель указателей поворотов
S144s2	Переключатель мигания дальним светом
S144s3	Переключатель стеклоочистителя и стеклоомывателя
S144s4	Переключатель стеклоочистителя
S159/1	Кнопка управления правой сдвижной дверью

Mercedes Vito Viano
Перечень элементов электрического оборудования

S164	Датчик-переключатель нейтрального положения КПП
T4	Преобразователь из 230 В переменного тока в 12 V постоянного тока
Точки заземления на «массу"	
W1/6	Салон
W2	Правая передняя блок-фара
W2/1	Справа впереди (ABS)
W2/6	Справа впереди (Правая передняя блок-фара с омывателем)
W6	Левая задняя стойка
W9	Левая передняя блок-фара
W9/3	Слева впереди (ABS)
W9/5	Слева впереди (левая передняя блок-фара с омывателем)
W10	AKE
W10/4	Дополнительная АКБ
W11/1	Двигатель
W12	Салон и центральная консоль
W26	Блок управления SRS
W29/8	Левая задняя стойка
W29/9	Правая задняя стойка
W29/14	Левая средняя стойка
W33/4	Заливная горловина топливного бака
W38	Потолок
W43/1	Левая внутренняя стенка
W43/2	Правая внутренняя стенка
W43/3	Правая внутренняя стенка
W78	Потолок

Разъемы (Наименования устройств или цепей, коммутируемых разъемами)

$\mathrm{X} 1 / 6$	Динамик левой двери
$\mathrm{X} 1 / 7$	Динамик правой двери
$\mathrm{X} 1 / 30$	Динамик
$\mathrm{X} 1 / 41$	Передняя антенна системы контроля давления в шинах
$\mathrm{X} 1 / 45$	Предварительная настройка антенны
$\mathrm{X} 2 / 5$	Тахограф
$\mathrm{X} 2 / 17$	Питание антенного усилителя
$\mathrm{X} 2 / 18$	Питание антенного усилителя
$\mathrm{X} 2 / 79$	Селектор телевизионной антенны
$\mathrm{X} 2 / 97$	Двойной телевизионный усилитель 1
$\mathrm{X} 2 / 98$	Двойной телевизионный усилитель2
$\mathrm{X} 8 / 20$	Правая задняя дверь (распашная)
$\mathrm{X} 8 / 20$	Правая задняя дверь (распашная)
$\mathrm{X} 8 / 21$	Задняя подьемная дверь
$\mathrm{X} 8 / 22$	Левая задняя дверь (распашная)
$\mathrm{X} 8 / 23$	Левая задняя дверь (распашная)
$\mathrm{X} 8 / 38$	Точка разрыва цепи реле привода
X 11	Мультиплексная сеть
$\mathrm{X} 11 / 32$	Между блоком селектора передач и мультиплексной сетью
$\mathrm{X} 11 / 35$	Блок компрессора пневматической подвески

X15	Выключатель вентилятора радиатора ($100^{\circ} \mathrm{C}$)
X18/2	Освещение грузового отсека
X18/16	Система навигации
X18/23	Телефон
X18/29	Разъем 1, в левой или правой части моторного отсека
X18/46	Переключатель голосового управления
X18/62	Подсветка номерного знака на подъемной двери
X18/63	Подсветка номерного знака на распашной двери
X18/65	Датчик кислорода (О2)
X18/66	Датчик кислорода (О2)
X20/1	Средний фонарь стоп-сигнала на подъемной задней двери
X20/11	Средний фонарь стоп-сигнала на распашной задней двери
X22	Соединение двигателя с цепями моторного отсека
X22/30	АКПП
X25/13	Датчик кислорода/температуры OГ
X25/14	Датчик кислорода/температуры ОГ
X25/17	Соединение цепей моторного отсека и салона
X25/18	Соединение цепей салона и КПП
X26/23	Соединение цепей моторного отсека и салона
X26/27	Система «Парктроник», передний бампер
X28/9	Пиропатрон УПН среднего переднего пассажира ETR [GUS]
X28/18	Датчик присутствия человека на сиденье
X28/23	Подушки безопасности переднего пассажирп и водителя
X28/29	Пиропатрон боковой нижней подушки безопасности водителя
X28/30	Пиропатрон боковой нижней подушки безопасности переднего пассажира
X28/31	Дублирующая сигнализация
X28/32	Дублирующая сигнализация
X28/44	Пиропатрон левой задней боковой подушки безопасности
X28/45	Пиропатрон правой задней боковой подушки безопасности
X30/24	Мультиплексная сеть (CAN -B)
X30/25	Мультиплексная сеть (CAN -B)
X30/26	Мультиплексная сеть (CAN -B)
X30/27	Мультиплексная сеть (CAN -B)
X31/9	Вход питания вентилятора
X31/10	Реле вентилятора
X31/12	Вентилятор, контакт 31
X35/27	Индикатор системы «Парктроник»
X35/28	Система «Парктроник», задний бампер
X35/56	Датчик кислорода (О2)
X39/15	Проигрыватель CD
X39/35	Антенна GPS
X39/36	Кассетный роигрыватель

This document is created with trial version of Image2PDF Pilot 2.16.108.
Mercedes Vito Viano
Перечень элементов электрического оборудования

X39/37	Антенна
X39/41	Оптоволоконный кабель, открытый выход
X39/42	Оптоволоконный кабель, открытый вход
X39/43	Разъем оптоволоконного кабеля
X39/54	Антенна GSM
X39/67	Разъем радиоподготовки
X39/72	Антенна телефона
X39/73	Оптоволоконный кабель (MOST)
X39/74	Оптоволоконный кабель (MOST)
X39/79	Радио/телефон
X39/80	Оптоволоконный кабель (MOST)
X41/5	Сигнальный фонарь на крыше
X42/8	Выключатель аварийной сигнализации
X42/30	Концевой выключатель противоугонной системы ATA [EDW] (капот)
X42/32	Копка сброса аварийной сигнализации
X43/10	Приводцентрального замка задней двери CL [ZV]
X52	Подключение трейлера
X52/5	Левый блок задних фонарей
X52/6	Левый блок задних фонарей
X53/7	Компрессор кондиционера
X54/12	Подогрев передних сидений
X54/29	Подогрев переднего левого сиденья
X54/29-1	Подогрев переднего левого сиденья
X54/29-2	Подогрев переднего левого сиденья
X54/29.1	Подогрев подушки переднего левого сиденья
X54/29.1	Подогрев подушки переднего левого сиденья
X54/29.2	Подогрев спинки переднего левого сиденья
X54/30	Подогрев переднего правого сиденья
X54/30-1	Подогрев переднего правого сиденья
X54/30-2	Подогрев переднего правого сиденья
X54/30.1	Подогрев подушки переднего правого сиденья
X54/30.1	Подогрев подушки переднего правого сиденья
X54/30.2	Подогрев спинки переднего правого сиденья
X55/1	Регулятор поясничной поддержки левого переднего сиденья
X55/2	Регулятор поясничной поддержки правого переднего сиденья
X55/3	Регулировка левого переднего сиденья
X55/4	Регулировка правого переднего сиденья
X55/32	Контрольный выключатель ремня безопасности водителя
X55/42	Контрольный выключатель ремня безопасности переднего пассажира
X57/3	Повторитель указателя поворотов на левом зеркале
X57/4	Повторитель указателя поворотов на левом зеркале
X57/7	Задний отопитель
X58	Разъем трейлера (13 контактов)
X58/1	Внутренняя розетка
X58/4	Левая передняя розетка грузового отсека

X58/12	Правая задняя розетка грузового отсека
X58/15	Правая передняя розетка грузового отсека
X58/17	Розетка 12B
X62/6	Передний правый датчик ABS и датчик износа колодок
X62/7	Передний правый датчик ABS и датчик износа колодок
X62/8	Разъем заднего левого датчика ABS
X62/21	Левый задний датчик ABS/ASR
X62/22	Правый задний датчик ABS/ASR
X72	Стационарный отопитель (STH)
X73/5	Разъем нагнетателя вторичного воздуха
X82/2	Обогреватель заднего стекла
X96/4	Задний блок рециркуляции воздуха разъем 2
X96/5	Задний блок рециркуляции воздуха разьем 3
X99/16	Разъем противоугонной системы ATA [EDW], соединение моторного отсека с элементами системы, расположенными на потолке
X100/5	Правая сдвижная дверь контактная пластина 1
X100/6	Правая сдвижная дверь контакт 1
X100/7	Правая сдвижная дверь контактная пластина 2
X100/8	Правая сдвижная дверь контакт 2
X100/9	Левая сдвижная дверь контактная пластина 1
X100/10	Правая сдвижная дверь контакт 1
X100/11	Левая сдвижная дверь контактная пластина 2
X100/12	Правая сдвижная дверь контакт 2
X144/3	Параметрический блок управления (PSM)
X144/4	Параметрический блок управления (PSM)
X144/5	Датчик-переключатель низкого давления
X144/6	Промежуточный разъем освещения грузового отсека
X144/7	Промежуточный разъем дополнительных ламп
X144/8	Правые дополнительные лампы
X144/9	Левые дополнительные лампы
X145/2	Блок управления и дисплей
X145/3	Блок управления и дисплей
X145/4	Параметрический блок управления (PSM)
X145/4	Параметрический блок управления (PSM)
X145/7	Блок управления и дисплей
XNC	Разъем антенны
Датчики, исполнительные устройства и блоки	
Y3/6	Блок управления АКПП
Y3/6b1	Датчик температуры масла в КПП
Y3/6n2	Датчик частоты вращения 2
Y3/6n3	Датчик частоты вращения 2
Y3/6s 1	Контакт блокировки стартера
Y3/6y 1	Пропорциональный управляющий клапан
Y3/6y2	Клапан управления давлением переключения передач
Y3/6y3	Клапан переключения с 1 на 2 и с 4 на 5 передачи
Y3/6y4	Клапан переключения с 3 на 4 передачу
Y3/6y5	Клапан переключения со 2 на 3 передачу

Mercedes Vito Viano
Перечень элементов электрического оборудования

Y3/6y6	Электромагнитный клапан блокировки гидротрансформатора PWM	Z3/64	Цепь питания 15
		Z4/1	Потолочное освещение цепь 30
Y19/2	Водяной клапан	Z6	Заземление
Y19/2k1	Реле водяного клапана	Z6/8	Заземление датчиков
Y22/5	Клапан управления заслонкой воздушного коллектора	Z6/8	Заземление датчиков
Y27	Привод клапана EGR	Z6/111	Заземление датчиков
		Z6/113	Заземление
Y27/11	Привод клапана EGR	Z6/114	Заземление датчиков
	Бпок клапанов системы регулирования уровня	27/24	Цепь 87
Y36	кузова ELC [ENR]	27/24	Цепь 87
Y36y1	Левый клапан регулирования уровня кузова	27/38	Цепь 87
Y36y2	Правый клапан регулирования уровня кузова	27/39	Цепь 87
Y58/1	Клапан управления очисткой	27/100	Цепь 87
Y58/11	Клапан управления очисткой	Z20/62	Соединение электрических экранов
Y59/2	Клапан подачи воздуха	Z27/7	Питание устройств пассивной безопасности с левой стороны
Y67	Клапан отсечки охладителя	Z27/8	Заземление левого датчика Холла
Y74	Клапан регулирования давления		Питание устройств пассивной безопасности с
Y74/1	Клапан регулирования давления	Z28/7	правой стороны
774/3	Клапан регулирования давления	Z28/8	Заземление правого датчика Холла
776/1	Топливная форсунка 1-го цилиндра	Z30/1	Индикатор левого указателя поворотов
776/2	Топливная форсунка 2-го цилиндра	Z30/2	Индикатор правого указателя поворотов
Y76/3	Топливная форсунка 3-го цилиндра	735/10	Сигнал активации мультиплексной сети медиа-
Y76/4	Топливная форсунка 4-го цилиндра	23510	устройств (D2B MOS
Y76/9	Топливная форсунка 1-го цилиндра	Z36/1	Заземление задних датчиков парковки
Y76/10	Топливная форсунка 2-го цилиндра	Z36/2	Питание задних датчиков парковки
Y76/11	Топливная форсунка 3-го цилиндра	Z36/3	Заземление передних датчиков парковки
Y76/12	Топливная форсунка 4-го цилиндра	Z36/4	Питание передних датчиков парковки
77/1	Вакуумный преобразователь управления	Z38	Фонари заднего хода
	наддувом	Z51	Цепь 30 центрального замка ELC (ENR)
Y77/4	Вакуумный преобразователь управления наддувом	Z54/2	Светодиодные фонари
Y77/5	Вакуумный преобразователь управления	Z66/1	Питание дополнительного блока предохранителей
Y83	Клапан отсечки входящего воздуха	Z75/1	Подсветка номерного знака
Y94	Клапан управления подачей топлива	275/2	Подсветка номерного знака
Y94/1	Клапан управления подачей топлива	Z75/3	Подсветка номерного знака
Y94/3	Клапан управления подачей топлива	275/4	Подсветка номерного знака
Y110/1	Топливная форсунка 1-го цилиндра	282/3	Цепи центрального замка распашных дверей CL [ZV]
Y110/2	Топливная форсунка 2-го цилиндра	Z83/15	Экранирование
Y110/3	Топливная форсунка 3-го цилиндра	Z85	Заземление датчика кислорода 02
Y110/4	Топливная форсунка 4-го цилиндра	Z86	Заземление датчика кислорода 02
Y110/5	Топливная форсунка 5-го цилиндра	Z96/2	Цепь 30 вентилятора кондиционера
Y110/6	Топливная форсунка 6-го цилиндра	296/3	Цепь 31 вентилятора кондиционера
Y124	Электромагнитная муфта привода компрессора кондиционера	2120/1	Цепь 15 стеклоочистителя задней двери
		2151	1-й режим отопителя
Y124x1	Разъем электромагнитной муфты привода компрессора кондиционера	Z151/1	Заслонка смешивания воздуха
Соединительные муфты электропроводки (названы коммутируемые цепи и устройства)		Z151/2	Заслонка смешивания воздуха
		Z151/3	1-й режим кондиционера
Z0/2	Соединительная муфта	Z162	Электродвигатель вентилятора
Z3/11	Цепь питания 15	Z203/3	Генератор
Z3/29	Цепь питания 15 (fс предохранителем)		

[^0]: Выбор языка
 Действия
 Нажимайте кнопку или до тех пор, пока не будет выделено подменю KOMBIINSTRUMENT (комбинация прибоpob).

[^1]: * Таблицу давления воздуха для нагретых шин вы найдете на крышке люка топливного бака автомобиля. Производите корректировку давления воздуха в шинах только при холодных шинах.

[^2]: $\begin{array}{llll}\text { 1. Болты } & \text { 2. Гидравлическая трубка } & \text { 3. Шланг } & \text { 4. Хомут }\end{array}$

